A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s...A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.展开更多
Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.Th...Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.展开更多
Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network m...Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective.展开更多
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r...Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.展开更多
In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- t...In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.展开更多
The continuously growing of cellular networks complexity, which followed the introduction of UMTS technology, has reduced the usefulness of traditional design tools, making them quite unworthy. The purpose of this pap...The continuously growing of cellular networks complexity, which followed the introduction of UMTS technology, has reduced the usefulness of traditional design tools, making them quite unworthy. The purpose of this paper is to illustrate a design tool for UMTS optimized net planning based on genetic algorithms. In particular, some utilities for 3G net designers, useful to respect important aspects (such as the environmental one) of the cellular network, are shown.展开更多
In the mobile radio industry, planning is a fundamental step for the deployment and commissioning of a Telecom network. The proposed models are based on the technology and the focussed architecture. In this context, w...In the mobile radio industry, planning is a fundamental step for the deployment and commissioning of a Telecom network. The proposed models are based on the technology and the focussed architecture. In this context, we introduce a comprehensive single-lens model for a fourth generation mobile network, Long Term Evolution Advanced Network (4G/LTE-A) technology which includes three sub assignments: cells in the core network. In the resolution, we propose an adaptation of the Genetic Evolutionary Algorithm for a global resolution. This is a combinatorial optimization problem that is considered as difficult. The use of this adaptive method does not necessarily lead to optimal solutions with the aim of reducing the convergence time towards a feasible solution.展开更多
To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on impr...To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization(PSO) algorithm is improved from three aspects.First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function.Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods.展开更多
In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two...In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of t...Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.展开更多
Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which uti...Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.展开更多
The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterpri...The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterprise data center requires a significant amount of time and human effort. Following a major disruption, the recovery process involves multiple stages, and during each stage, the partially recovered infrastructures can provide limited services to users at some degraded service level. However, how fast and efficiently an enterprise infrastructure can be recovered de- pends on how the recovery mechanism restores the disrupted components, considering the inter-dependencies between services, along with the limitations of expert human operators. The entire problem turns out to be NP- hard and rather complex, and we devise an efficient meta-heuristic to solve the problem. By considering some real-world examples, we show that the proposed meta-heuristic provides very accurate results, and still runs 600-2800 times faster than the optimal solution obtained from a general purpose mathematical solver [1].展开更多
Public transit planning is a user-oriented problem, respectful of financial issues and involves different stakeholders such as the general public, the transportation provider and the local government. One of the main ...Public transit planning is a user-oriented problem, respectful of financial issues and involves different stakeholders such as the general public, the transportation provider and the local government. One of the main components of public transit planning is the transit network design (TND) problem. This research is an attempt to perform transit network design and analysis in the city of Sanandaj, Iran using the capabilities of GIS and Honeybee algorithm. Objectives of this study are formulating a multi-objective model of the TND problem, developing a GIS-based procedure for solving the TND problem and examination of the solutions using artificial metaheuristic methods such as honeybee algorithm. The transit network design approach in this research, aims to reduce the walking distance, the total travel distance and the total number of stops needed for a suitable transit service in Sanandaj, Iran. One of the contributions of this research is developing a transit network design with utilizing a spectrum of GIS software modelling functionalities and using the abilities of the artificial intelligence in modelling and assessment of the transit network.展开更多
To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning...To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning and Lévy flight sparrow search algorithm(SSA),which is named elite opposition-based learning and Levy flight SSA(ELSSA).First,the algorithm initializes the population by an elite opposed-based learning strategy to enhance the diversity of the population.Second,Lévy flight is introduced into the scrounger’s position update formula to solve the situation that the algorithm falls into the local optimal solution.It has a probability that the current position is changed by Lévy flight.This method can jump out of the local optimal solution.In the end,the proposed method is compared with particle swarm optimization(PSO)algorithm,grey wolf optimzer(GWO)algorithm and SSA in the multiple simulation tests.The simulated results showed that,under the same number of readers,the average fitness of the ELSSA is improved respectively by 3.36%,5.67%and 18.45%.By setting the different number of readers,ELSSA uses fewer readers than other algorithms.The conclusion shows that the proposed method can ensure a satisfying coverage by using fewer readers and achieving higher comprehensive performance.展开更多
针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映...针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映射跟随者的关系,增强算法全局寻优的能力,在追随者进化过程中集成自适应权重ω,以实现算法探索和开发的平衡;同时选用黄金正弦算法变异进一步提高解的精度。其次,对12个基准函数进行仿真求解,实验数据表明平均值、标准差、Wilcoxon检验和收敛曲线均优于基本樽海鞘群和其他群体智能算法,证明了所提算法具有较高的寻优精度和收敛速度。最后,将BAGSSA应用于移动机器人路径规划问题中,并在两种测试环境中进行仿真实验,仿真结果表明,改进樽海鞘群算法较其他算法所寻路径更优,并具有一定理论与实际应用价值。展开更多
文摘A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.
基金supported by the Science and Technology Project of China Southern Power Grid(GZHKJXM20210043-080041KK52210002).
文摘Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.
基金Project supported by the National Natural Science Foundation of China (No. 60105003) and the Natural Science Foundation of Zhejiang Province (No. 600025), China
文摘Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective.
文摘Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.
基金supported by National High Technology Research and Development Program of China under Grant No.2011AA01A104National 973 Program underGrant No. 2013CB329204National Natural Science Foundation of China under Grant No.61100206
文摘In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.
文摘The continuously growing of cellular networks complexity, which followed the introduction of UMTS technology, has reduced the usefulness of traditional design tools, making them quite unworthy. The purpose of this paper is to illustrate a design tool for UMTS optimized net planning based on genetic algorithms. In particular, some utilities for 3G net designers, useful to respect important aspects (such as the environmental one) of the cellular network, are shown.
文摘In the mobile radio industry, planning is a fundamental step for the deployment and commissioning of a Telecom network. The proposed models are based on the technology and the focussed architecture. In this context, we introduce a comprehensive single-lens model for a fourth generation mobile network, Long Term Evolution Advanced Network (4G/LTE-A) technology which includes three sub assignments: cells in the core network. In the resolution, we propose an adaptation of the Genetic Evolutionary Algorithm for a global resolution. This is a combinatorial optimization problem that is considered as difficult. The use of this adaptive method does not necessarily lead to optimal solutions with the aim of reducing the convergence time towards a feasible solution.
基金supported by the National Natural Science Foundation of China (61502522)Hubei Provincial Natural Science Foundation(2019CFC897)。
文摘To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization(PSO) algorithm is improved from three aspects.First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function.Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods.
基金Project(2009CB219703) supported by the National Basic Research Program of ChinaProject(2011AA05A117) supported by the National High Technology Research and Development Program of China
文摘In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
基金Project(51178061)supported by the National Natural Science Foundation of ChinaProject(2010FJ6016)supported by Hunan Provincial Science and Technology,China+1 种基金Project(12C0015)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(13JJ3072)supported by Hunan Provincial Natural Science Foundation of China
文摘Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.
基金Supported by the Important National Science and Technology Specific Project of China(No.20112X03002-002-03)the National NatureScience Foundation of China(No.61133016,61163066)
文摘Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.
文摘The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterprise data center requires a significant amount of time and human effort. Following a major disruption, the recovery process involves multiple stages, and during each stage, the partially recovered infrastructures can provide limited services to users at some degraded service level. However, how fast and efficiently an enterprise infrastructure can be recovered de- pends on how the recovery mechanism restores the disrupted components, considering the inter-dependencies between services, along with the limitations of expert human operators. The entire problem turns out to be NP- hard and rather complex, and we devise an efficient meta-heuristic to solve the problem. By considering some real-world examples, we show that the proposed meta-heuristic provides very accurate results, and still runs 600-2800 times faster than the optimal solution obtained from a general purpose mathematical solver [1].
文摘Public transit planning is a user-oriented problem, respectful of financial issues and involves different stakeholders such as the general public, the transportation provider and the local government. One of the main components of public transit planning is the transit network design (TND) problem. This research is an attempt to perform transit network design and analysis in the city of Sanandaj, Iran using the capabilities of GIS and Honeybee algorithm. Objectives of this study are formulating a multi-objective model of the TND problem, developing a GIS-based procedure for solving the TND problem and examination of the solutions using artificial metaheuristic methods such as honeybee algorithm. The transit network design approach in this research, aims to reduce the walking distance, the total travel distance and the total number of stops needed for a suitable transit service in Sanandaj, Iran. One of the contributions of this research is developing a transit network design with utilizing a spectrum of GIS software modelling functionalities and using the abilities of the artificial intelligence in modelling and assessment of the transit network.
基金supported by the National Natural Science Foundation of China(61761004)。
文摘To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning and Lévy flight sparrow search algorithm(SSA),which is named elite opposition-based learning and Levy flight SSA(ELSSA).First,the algorithm initializes the population by an elite opposed-based learning strategy to enhance the diversity of the population.Second,Lévy flight is introduced into the scrounger’s position update formula to solve the situation that the algorithm falls into the local optimal solution.It has a probability that the current position is changed by Lévy flight.This method can jump out of the local optimal solution.In the end,the proposed method is compared with particle swarm optimization(PSO)algorithm,grey wolf optimzer(GWO)algorithm and SSA in the multiple simulation tests.The simulated results showed that,under the same number of readers,the average fitness of the ELSSA is improved respectively by 3.36%,5.67%and 18.45%.By setting the different number of readers,ELSSA uses fewer readers than other algorithms.The conclusion shows that the proposed method can ensure a satisfying coverage by using fewer readers and achieving higher comprehensive performance.
文摘针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映射跟随者的关系,增强算法全局寻优的能力,在追随者进化过程中集成自适应权重ω,以实现算法探索和开发的平衡;同时选用黄金正弦算法变异进一步提高解的精度。其次,对12个基准函数进行仿真求解,实验数据表明平均值、标准差、Wilcoxon检验和收敛曲线均优于基本樽海鞘群和其他群体智能算法,证明了所提算法具有较高的寻优精度和收敛速度。最后,将BAGSSA应用于移动机器人路径规划问题中,并在两种测试环境中进行仿真实验,仿真结果表明,改进樽海鞘群算法较其他算法所寻路径更优,并具有一定理论与实际应用价值。