Various nonlinear phenomena such as bifurcations and chaos in the responses of carbon nanotubes(CNTs)are recognized as being major contributors to the inaccuracy and instability of nanoscale mechanical systems.Therefo...Various nonlinear phenomena such as bifurcations and chaos in the responses of carbon nanotubes(CNTs)are recognized as being major contributors to the inaccuracy and instability of nanoscale mechanical systems.Therefore,the main purpose of this paper is to predict the nonlinear dynamic behavior of a CNT conveying viscousfluid and supported on a nonlinear elastic foundation.The proposed model is based on nonlocal Euler–Bernoulli beam theory.The Galerkin method and perturbation analysis are used to discretize the partial differential equation of motion and obtain the frequency-response equation,respectively.A detailed parametric study is reported into how the nonlocal parameter,foundation coefficients,fluid viscosity,and amplitude and frequency of the external force influence the nonlinear dynamics of the system.Subharmonic,quasi-periodic,and chaotic behaviors and hardening nonlinearity are revealed by means of the vibration time histories,frequency-response curves,bifurcation diagrams,phase portraits,power spectra,and Poincarémaps.Also,the results show that it is possible to eliminate irregular motion in the whole range of external force amplitude by selecting appropriate parameters.展开更多
Volatile organic compounds(VOCs)are generally toxic and harmful substances that can cause health and environmental problems.The removal of VOCs from polymers has become a key problem.The effective devolatilization to ...Volatile organic compounds(VOCs)are generally toxic and harmful substances that can cause health and environmental problems.The removal of VOCs from polymers has become a key problem.The effective devolatilization to remove VOCs from high viscous fluids such as polymer is necessary and is of great importance.In this study,the devolatilization effect of a rotating packed bed(RPB)was studied by using polydimethylsiloxane as the viscous fluid and acetone as the VOC.The devolatilization rate and liquid phase volume(KLa)have been evaluated.The results indicated that the optimum conditions were the high-gravity factor of 60,liquid flow rate of 10 L·h^(-1),and vacuum degree of 0.077 MPa.The dimensionless correlation of KLa was established,and the deviations between predicted and experimental values were less than±28%.The high-gravity technology will result in lower mass transfer resistance in the devolatilization process,enhance the mass transfer process of acetone,and improve the removal effect of acetone.This work provides a promising path for the removal of volatiles from polymers in combination with high-gravity technology.It can provide the basis for the application of RPB in viscous fluids.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
This paper is concerned with the construction of global, large amplitude solu- tions to the Cauchy problem of the one-dimensional compressible Navier-Stokes system for a viscous radiative gas when the viscosity and he...This paper is concerned with the construction of global, large amplitude solu- tions to the Cauchy problem of the one-dimensional compressible Navier-Stokes system for a viscous radiative gas when the viscosity and heat conductivity coefficients depend on both specific volume and absolute temperature. The data are assumed to be without vacuum, mass concentrations, or vanishing temperatures, and the same is shown to be hold for the global solution constructed. The proof is based on some detailed analysis on uniform positive lower and upper bounds of the specific volume and absolute temperature.展开更多
We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of th...We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument.展开更多
We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous...We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.展开更多
This paper is concerned with the large-time behavior of solutions to the Cauchy problem of a one-dimensional viscous radiative and reactive gas.Based on the elaborate energy estimates,we develop a new approach to deri...This paper is concerned with the large-time behavior of solutions to the Cauchy problem of a one-dimensional viscous radiative and reactive gas.Based on the elaborate energy estimates,we develop a new approach to derive the upper bound of the absolute temperature by avoiding the use of auxiliary functions Z(t)and W(t)introduced by Liao and Zhao[J.Differential Equations,2018,265(5):2076-2120].Our results also improve upon the results obtained in Liao and Zhao[J.Differential Equations,2018,265(5):2076-2120].展开更多
In this article, we are concerned with the global weak solutions to the 1D com- pressible viscous hydrodynamic equations with dispersion correction δ2ρ((φ(ρ))xxφ′(ρ))x with φ(ρ) = ρα. The model co...In this article, we are concerned with the global weak solutions to the 1D com- pressible viscous hydrodynamic equations with dispersion correction δ2ρ((φ(ρ))xxφ′(ρ))x with φ(ρ) = ρα. The model consists of viscous stabilizations because of quantum Fokker-Planck operator in the Wigner equation and is supplemented with periodic boundary and initial con- ditions. The diffusion term εuxx in the momentum equation may be interpreted as a classical conservative friction term because of particle interactions. We extend the existence result in [1] (α=1/2) to 0 〈 α ≤ 1. In addition, we perform the limit ε→0 with respect to 0 〈 α ≤1/2.展开更多
In this paper, we consider with the large time behavior of solutions of the Cauchy problem to the one-dimensional compressible micropolar fluid model, where the far field states are prescribed. When the corresponding ...In this paper, we consider with the large time behavior of solutions of the Cauchy problem to the one-dimensional compressible micropolar fluid model, where the far field states are prescribed. When the corresponding Riemann problem for the Euler system admits the solution consisting of contact discontinuity and rarefaction waves, it is shown that the combination wave corresponding to the contact discontinuity, with rarefaction waves is asymptotically stable provided that the strength of the combination wave and the initial perturbation are suitably small. This result is proved by using elementary L2-energy methods.展开更多
We consider the large time behavior of solutions of the Cauchy problem for the one-dimensional compressible Navier-Stokes equations for a reacting mixture.When the corresponding Riemann problem for the Euler system ad...We consider the large time behavior of solutions of the Cauchy problem for the one-dimensional compressible Navier-Stokes equations for a reacting mixture.When the corresponding Riemann problem for the Euler system admits a contact discontinuity wave,it is shown that the viscous contact wave which corresponds to the contact discontinuity is asymptotically stable,provided the strength of contact discontinuity and the initial perturbation are suitably small.We apply the approach introduced in Huang,Li and Matsumura(2010)[1]and the elemen tary L2-energy met hods.展开更多
In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suit...In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter.展开更多
Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dam...Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.展开更多
The effect toxic industrial discharge on the environment and ecosystem cannot be overlooked. This is owing to a partial combustion of hydrocarbon arising from industrial activities and human endeavours. As such, this ...The effect toxic industrial discharge on the environment and ecosystem cannot be overlooked. This is owing to a partial combustion of hydrocarbon arising from industrial activities and human endeavours. As such, this investigation focuses on the pressure driven flow and heat propagation of combustible Prandtl-Eyring viscous heating fluid in a horizontal device. The combustion-reaction of the viscoplastic material is considered to be inspired by two-step exothermic reaction. With negligible reactant consumption, the flowing fluid is influenced by a chemical kinetic, activation energy and electromagnetic force. An invariant transformation of the partial derivative model to an ordinary derivative model is obtained through an applied dimensionless variable. The solutions to the unsteady thermal fluid flow model are obtained via a semi-implicit difference scheme, and the outputs of the solution are displayed in plots and tables. As revealed, an enhanced heat propagation is obtained that in turn encourages the combustion process of the system. Also, increasing material dilatant simulated fluid molecular bond and viscosity. Therefore, the outcomes of this study are treasured to the thermal and chemical engineering, and the environmental management.展开更多
With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of ...With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of the motion of particles in the optical trap,but paid little attention to the early dynamic process between the initial state of the particles and the optical trap.Note that the viscous forces can greatly affect the motion of micro-spheres.In this paper,based on the equations of Newtonian mechanics,we investigate the dynamics of laser-trapped micro-spheres in the surrounding environment with different viscosity coefficients.Through the calculations,over time the particle trajectory clearly reveals the subtle details of the optical capture process,including acceleration,deceleration,turning,and reciprocating oscillation.The time to equilibrium mainly depends on the corresponding damping coefficient of the surrounding environment and the oscillation frequency of the optical tweezers.These studies are essential for understanding various mechanisms to engineer the mechanical motion behavior of molecules or microparticles in liquid or air.展开更多
The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that ...The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that the PZT(piezoelectric)layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer.This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid.It is also the first time that the influence of the volumetric concentration of the constituents on the vibration of the hydro-elasto-piezoelectric system is studied.Another value of the present work is the use of the exact equations and relations of elasto-electrodynamics for elastic and piezoelectric materials to describe the motion of the plate layers within the framework of the piecewise homogeneous body model and the use of the linearized Navier-Stokes equations to describe the flow of the compressible viscous fluid.The plane-strain state in the plate and the plane flow in the fluid take place.For the solution of the corresponding boundary-value problem,the Fourier transform is used with respect to the spatial coordinate on the axis along the laying direction of the plate.The analytical expressions of the Fourier transform of all the sought values of each component of the system are determined.The origins of the searched values are determined numerically,after which numerical results on the stress on the fluid and plate interface planes are presented and discussed.These results are obtained for the case where PZT-2 is chosen as the piezoelectric material,steel and aluminum as the elastic metal materials,and Glycerin as the fluid.Analysis of these results allows conclusions to be drawn about the character of the problem parameters on the frequency response of the interfacial stress.In particular,it was found that after a certain value of the vibration frequency,the presence of the metal layer in the two-layer plate led to an increase in the absolute values of the above interfacial stress.展开更多
Extrusion, melt spinning, glass fiber production, food processing, and mechanical molding rely on heat transmission. Isothermal techniques have been employed in highly structured equipment and living cell temperature ...Extrusion, melt spinning, glass fiber production, food processing, and mechanical molding rely on heat transmission. Isothermal techniques have been employed in highly structured equipment and living cell temperature regulators. The flow and heat properties of CuO nanofluids flowing through a moving cylindrical isothermal conduit were examined, in the presence of nanoparticles and viscous dissipation. Two-dimensional flows of an incompressible Newtonian fluid via a cylindrical conduit with uniform surface velocity and temperature were utilized. The flow’s partial differential equations were transformed to a non-dimensional form and numerically solved using a finite difference scheme built in the C++ program. The effect of nanoparticle size (0.0 to 0.6) and viscous dissipation (0, 20, 40) on heat behavior and fluid movement are examined and profiles are used to present the numerical findings. The findings revealed that decreasing the variable nanoparticle parameter increased fluid velocity, stream function, and circulation while decreasing fluid temperature. The temperature of the fluid rises in direct proportion, as the viscous dissipation factor improves. This study improves understanding of the viscous flow and heat behavior of boundary layer problems when a nanofluid is used as the heat transfer working fluid in various engineering isothermal processes such as boiling and condensation.展开更多
Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analys...Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyze the influence of different ellipticity dies on the formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulging specimens. The results showed that at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference value of non-uniform pressure reduces. Meanwhile, according to the FLD, the relationship between part complexity and ultimate deformation was investigated.展开更多
Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve...Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
文摘Various nonlinear phenomena such as bifurcations and chaos in the responses of carbon nanotubes(CNTs)are recognized as being major contributors to the inaccuracy and instability of nanoscale mechanical systems.Therefore,the main purpose of this paper is to predict the nonlinear dynamic behavior of a CNT conveying viscousfluid and supported on a nonlinear elastic foundation.The proposed model is based on nonlocal Euler–Bernoulli beam theory.The Galerkin method and perturbation analysis are used to discretize the partial differential equation of motion and obtain the frequency-response equation,respectively.A detailed parametric study is reported into how the nonlocal parameter,foundation coefficients,fluid viscosity,and amplitude and frequency of the external force influence the nonlinear dynamics of the system.Subharmonic,quasi-periodic,and chaotic behaviors and hardening nonlinearity are revealed by means of the vibration time histories,frequency-response curves,bifurcation diagrams,phase portraits,power spectra,and Poincarémaps.Also,the results show that it is possible to eliminate irregular motion in the whole range of external force amplitude by selecting appropriate parameters.
基金the financial support from the Scientific Research Program of Taiyuan University (23TYQN23)
文摘Volatile organic compounds(VOCs)are generally toxic and harmful substances that can cause health and environmental problems.The removal of VOCs from polymers has become a key problem.The effective devolatilization to remove VOCs from high viscous fluids such as polymer is necessary and is of great importance.In this study,the devolatilization effect of a rotating packed bed(RPB)was studied by using polydimethylsiloxane as the viscous fluid and acetone as the VOC.The devolatilization rate and liquid phase volume(KLa)have been evaluated.The results indicated that the optimum conditions were the high-gravity factor of 60,liquid flow rate of 10 L·h^(-1),and vacuum degree of 0.077 MPa.The dimensionless correlation of KLa was established,and the deviations between predicted and experimental values were less than±28%.The high-gravity technology will result in lower mass transfer resistance in the devolatilization process,enhance the mass transfer process of acetone,and improve the removal effect of acetone.This work provides a promising path for the removal of volatiles from polymers in combination with high-gravity technology.It can provide the basis for the application of RPB in viscous fluids.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
基金supported by National Natural Science Foundation of China(11601398,11671309,11731008)
文摘This paper is concerned with the construction of global, large amplitude solu- tions to the Cauchy problem of the one-dimensional compressible Navier-Stokes system for a viscous radiative gas when the viscosity and heat conductivity coefficients depend on both specific volume and absolute temperature. The data are assumed to be without vacuum, mass concentrations, or vanishing temperatures, and the same is shown to be hold for the global solution constructed. The proof is based on some detailed analysis on uniform positive lower and upper bounds of the specific volume and absolute temperature.
基金supported by"the Fundamental Research Funds for the Central Universities"
文摘We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument.
文摘We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.
基金National Postdoctoral Program for Innovative Talents of China(BX20180054).
文摘This paper is concerned with the large-time behavior of solutions to the Cauchy problem of a one-dimensional viscous radiative and reactive gas.Based on the elaborate energy estimates,we develop a new approach to derive the upper bound of the absolute temperature by avoiding the use of auxiliary functions Z(t)and W(t)introduced by Liao and Zhao[J.Differential Equations,2018,265(5):2076-2120].Our results also improve upon the results obtained in Liao and Zhao[J.Differential Equations,2018,265(5):2076-2120].
文摘In this article, we are concerned with the global weak solutions to the 1D com- pressible viscous hydrodynamic equations with dispersion correction δ2ρ((φ(ρ))xxφ′(ρ))x with φ(ρ) = ρα. The model consists of viscous stabilizations because of quantum Fokker-Planck operator in the Wigner equation and is supplemented with periodic boundary and initial con- ditions. The diffusion term εuxx in the momentum equation may be interpreted as a classical conservative friction term because of particle interactions. We extend the existence result in [1] (α=1/2) to 0 〈 α ≤ 1. In addition, we perform the limit ε→0 with respect to 0 〈 α ≤1/2.
文摘In this paper, we consider with the large time behavior of solutions of the Cauchy problem to the one-dimensional compressible micropolar fluid model, where the far field states are prescribed. When the corresponding Riemann problem for the Euler system admits the solution consisting of contact discontinuity and rarefaction waves, it is shown that the combination wave corresponding to the contact discontinuity, with rarefaction waves is asymptotically stable provided that the strength of the combination wave and the initial perturbation are suitably small. This result is proved by using elementary L2-energy methods.
基金supported by the National Natural Science Foundation of China(11871341).
文摘We consider the large time behavior of solutions of the Cauchy problem for the one-dimensional compressible Navier-Stokes equations for a reacting mixture.When the corresponding Riemann problem for the Euler system admits a contact discontinuity wave,it is shown that the viscous contact wave which corresponds to the contact discontinuity is asymptotically stable,provided the strength of contact discontinuity and the initial perturbation are suitably small.We apply the approach introduced in Huang,Li and Matsumura(2010)[1]and the elemen tary L2-energy met hods.
文摘In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter.
文摘Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.
文摘The effect toxic industrial discharge on the environment and ecosystem cannot be overlooked. This is owing to a partial combustion of hydrocarbon arising from industrial activities and human endeavours. As such, this investigation focuses on the pressure driven flow and heat propagation of combustible Prandtl-Eyring viscous heating fluid in a horizontal device. The combustion-reaction of the viscoplastic material is considered to be inspired by two-step exothermic reaction. With negligible reactant consumption, the flowing fluid is influenced by a chemical kinetic, activation energy and electromagnetic force. An invariant transformation of the partial derivative model to an ordinary derivative model is obtained through an applied dimensionless variable. The solutions to the unsteady thermal fluid flow model are obtained via a semi-implicit difference scheme, and the outputs of the solution are displayed in plots and tables. As revealed, an enhanced heat propagation is obtained that in turn encourages the combustion process of the system. Also, increasing material dilatant simulated fluid molecular bond and viscosity. Therefore, the outcomes of this study are treasured to the thermal and chemical engineering, and the environmental management.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804399)the Special Funds for Basic Scientific Research at the Central University of South-Central University for Nationalities(Grant No.CZQ20018)Special Funds for Basic Scientific Research at Central Universities(Grant No.YZZ17005)。
文摘With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of the motion of particles in the optical trap,but paid little attention to the early dynamic process between the initial state of the particles and the optical trap.Note that the viscous forces can greatly affect the motion of micro-spheres.In this paper,based on the equations of Newtonian mechanics,we investigate the dynamics of laser-trapped micro-spheres in the surrounding environment with different viscosity coefficients.Through the calculations,over time the particle trajectory clearly reveals the subtle details of the optical capture process,including acceleration,deceleration,turning,and reciprocating oscillation.The time to equilibrium mainly depends on the corresponding damping coefficient of the surrounding environment and the oscillation frequency of the optical tweezers.These studies are essential for understanding various mechanisms to engineer the mechanical motion behavior of molecules or microparticles in liquid or air.
文摘The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that the PZT(piezoelectric)layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer.This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid.It is also the first time that the influence of the volumetric concentration of the constituents on the vibration of the hydro-elasto-piezoelectric system is studied.Another value of the present work is the use of the exact equations and relations of elasto-electrodynamics for elastic and piezoelectric materials to describe the motion of the plate layers within the framework of the piecewise homogeneous body model and the use of the linearized Navier-Stokes equations to describe the flow of the compressible viscous fluid.The plane-strain state in the plate and the plane flow in the fluid take place.For the solution of the corresponding boundary-value problem,the Fourier transform is used with respect to the spatial coordinate on the axis along the laying direction of the plate.The analytical expressions of the Fourier transform of all the sought values of each component of the system are determined.The origins of the searched values are determined numerically,after which numerical results on the stress on the fluid and plate interface planes are presented and discussed.These results are obtained for the case where PZT-2 is chosen as the piezoelectric material,steel and aluminum as the elastic metal materials,and Glycerin as the fluid.Analysis of these results allows conclusions to be drawn about the character of the problem parameters on the frequency response of the interfacial stress.In particular,it was found that after a certain value of the vibration frequency,the presence of the metal layer in the two-layer plate led to an increase in the absolute values of the above interfacial stress.
文摘Extrusion, melt spinning, glass fiber production, food processing, and mechanical molding rely on heat transmission. Isothermal techniques have been employed in highly structured equipment and living cell temperature regulators. The flow and heat properties of CuO nanofluids flowing through a moving cylindrical isothermal conduit were examined, in the presence of nanoparticles and viscous dissipation. Two-dimensional flows of an incompressible Newtonian fluid via a cylindrical conduit with uniform surface velocity and temperature were utilized. The flow’s partial differential equations were transformed to a non-dimensional form and numerically solved using a finite difference scheme built in the C++ program. The effect of nanoparticle size (0.0 to 0.6) and viscous dissipation (0, 20, 40) on heat behavior and fluid movement are examined and profiles are used to present the numerical findings. The findings revealed that decreasing the variable nanoparticle parameter increased fluid velocity, stream function, and circulation while decreasing fluid temperature. The temperature of the fluid rises in direct proportion, as the viscous dissipation factor improves. This study improves understanding of the viscous flow and heat behavior of boundary layer problems when a nanofluid is used as the heat transfer working fluid in various engineering isothermal processes such as boiling and condensation.
基金Project(51575364)supported by the National Natural Science Foundation of ChinaProject(2013024014)supported by the Natural Foundation of Liaoning Province,China
文摘Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyze the influence of different ellipticity dies on the formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulging specimens. The results showed that at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference value of non-uniform pressure reduces. Meanwhile, according to the FLD, the relationship between part complexity and ultimate deformation was investigated.
文摘Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.