The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear...The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.展开更多
In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated an...In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated and compared.Conclusions inferred from the analysis are given below. The synchronous scheme as well as the asynchronous-implicit scheme in this model are stable for arbitrary integrating time intervals. The asynchronous explicit scheme is unstable under certain conditions, which depend upon advection velocities and heat exchange parameters in the atmosphere and oceans. With both synchronous and asynchronous stable schemes the discrete solutions converge to their unique exact ones. Advections in the atmosphere and ocean accelerate the rate of convergence of the asynchronous-implicit scheme. It is suggusted that the asynchronous-implicit coupling scheme is a stable and efficient method for most climatic simulations.展开更多
We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forwa...We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided.展开更多
A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injecti...A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injection system in CFETR.In this model,the electron effective collision frequency and the ion mobility at high E-fields are employed,for accurate simulation of discharges at low pressures(0.3 Pa-2 Pa)and high powers(40 kW-100 kW).The results indicate that when the high E-field ion mobility is taken into account,the electron density is about four times higher than the value in the low E-field case.In addition,the influences of the magnetic field,pressure and power on the electron density and electron temperature are demonstrated.It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances.However,the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not.Besides,the maximum of the electron density first increases and then decreases with magnetic field,while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum moving upwards to the driver region,and the symmetry of the electron temperature in the xz-plane becomes much better.As power increases,the electron density rises,whereas the spatial distribution is similar.It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters,while the power only has little effect.展开更多
In this study, we propose a novel discrete-time coupled model to generate oscillatory responses via periodic points with a high periodic order. Our coupled system comprises one-dimensional oscillators based on the Rul...In this study, we propose a novel discrete-time coupled model to generate oscillatory responses via periodic points with a high periodic order. Our coupled system comprises one-dimensional oscillators based on the Rulkov map and a single globally coupled oscillator. Because the waveform of a one-dimensional oscillator has sharply defined peaks, the coupled system can be applied to dynamic image segmentation. Our proposed system iteratively transforms the coupling of each oscillator based on an input value that corresponds to the pixel value of an input image. This approach enables our system to segment image regions in which pixel values gradually change with respect to a connected region. We conducted a bifurcation analysis of a single oscillator and a three-coupled model. Through simulations, we demonstrated that our system works well for gray-level images with three isolated image regions.展开更多
One kind of 3D coupled thermo-hydro-mechanical-migratory model for saturated-unsaturated dual-porosity medium was established,in which the stress field and the temperature field are single,but the seepage field and th...One kind of 3D coupled thermo-hydro-mechanical-migratory model for saturated-unsaturated dual-porosity medium was established,in which the stress field and the temperature field are single,but the seepage field and the concentration field are double,and the influences of sets,spaces,angles,continuity ratios,stiffness of fractures on the constitutive relationship of the medium can be considered.The relative three-dimensional program of finite element method was also developed.By comparing with the existing computation example,reliability of the model and the program were verified.Taking a hypothetical nuclear waste repository as a calculation example,the radioactive nuclide leak was simulated numerically with both the rock mass and the buffer being unsaturated media,and the temperatures,negative pore pressures,flow velocities,nuclide concentrations and normal stresses in the rock mass were investigated.The results showed that the temperatures,negative pore pressures and nuclide concentrations in the buffer all present nonlinear changes and distributions that even though the saturation degree in porosity is only about 1/9 of that in fracture,the flow velocity of underground water in fracture is about 6 times of that in porosity because the permeability coefficient of fracture is almost four orders higher than that of porosity,and that the regions of stress concentration occur at the vicinity of two sides of the boundary between buffer and disposal pit wall.展开更多
The main compressor in a supercritical carbon dioxide(SCO2)Brayton cycle works near the critical point where the physical properties of CO_(2)are far away from the ideal gas.To investigate the effectiveness of the con...The main compressor in a supercritical carbon dioxide(SCO2)Brayton cycle works near the critical point where the physical properties of CO_(2)are far away from the ideal gas.To investigate the effectiveness of the conventional one-dimensional(1D)loss models for predicting the performance of compressors working in such nontraditional conditions,detailed comparisons of 1D predicted performance,experimental data and threedimensional CFD results are made.A 1D analysis method with enthalpy and total pressure based loss system is developed for multistage SCO2 centrifugal compressors,and it is firstly validated against the experimental results of a single stage SCO2 centrifugal compressor from the Sandia National Laboratory.A good agreement of pressure ratios with experiments can be achieved by the 1D method.But the efficiency deviations reveal the potential deficiencies of the parasitic loss models.On the basis of the validation,a two-stage SCO2 centrifugal compressor is employed to do the evaluation.Three-dimensional CFD simulations are performed.Detailed comparisons are made between the CFD and the 1D results at different stations located in the compressor.The features of the deviations are analyzed in detail,as well as the reasons that might cause these deviations.展开更多
Several lumped parameter,or zero-dimensional(0-D),models of the microcirculation are coupled in the time domain to the nonlinear,one-dimensional(1-D)equations of blood flow in large arteries.A linear analysis of the c...Several lumped parameter,or zero-dimensional(0-D),models of the microcirculation are coupled in the time domain to the nonlinear,one-dimensional(1-D)equations of blood flow in large arteries.A linear analysis of the coupled system,together with in vivo observations,shows that:(i)an inflow resistance that matches the characteristic impedance of the terminal arteries is required to avoid non-physiological wave reflections;(ii)periodic mean pressures and flow distributions in large arteries depend on arterial and peripheral resistances,but not on the compliances and inertias of the system,which only affect instantaneous pressure and flow waveforms;(iii)peripheral inertias have a minor effect on pulse waveforms under normal conditions;and(iv)the time constant of the diastolic pressure decay is the same in any 1-D model artery,if viscous dissipation can be neglected in these arteries,and it depends on all the peripheral compliances and resistances of the system.Following this analysis,we propose an algorithm to accurately estimate peripheral resistances and compliances from in vivo data.This algorithm is verified against numerical data simulated using a 1-D model network of the 55 largest human arteries,in which the parameters of the peripheral windkessel outflow models are known a priori.Pressure and flow waveforms in the aorta and the first generation of bifurcations are reproduced with relative root-mean-square errors smaller than 3%.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51974173)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QD122).
文摘The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.
文摘In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated and compared.Conclusions inferred from the analysis are given below. The synchronous scheme as well as the asynchronous-implicit scheme in this model are stable for arbitrary integrating time intervals. The asynchronous explicit scheme is unstable under certain conditions, which depend upon advection velocities and heat exchange parameters in the atmosphere and oceans. With both synchronous and asynchronous stable schemes the discrete solutions converge to their unique exact ones. Advections in the atmosphere and ocean accelerate the rate of convergence of the asynchronous-implicit scheme. It is suggusted that the asynchronous-implicit coupling scheme is a stable and efficient method for most climatic simulations.
基金Supported by the National Natural Science Foundation of China under Grant No 11774374the Natural Science Foundation of Shandong Province of China under Grant No ZR2016AL10
文摘We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFE0300106)the National Natural Science Foundation of China(Grant No.12075049)the Fundamental Research Funds for the Central Universities,China(Grant Nos.DUT20LAB201 and DUT21LAB110).
文摘A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injection system in CFETR.In this model,the electron effective collision frequency and the ion mobility at high E-fields are employed,for accurate simulation of discharges at low pressures(0.3 Pa-2 Pa)and high powers(40 kW-100 kW).The results indicate that when the high E-field ion mobility is taken into account,the electron density is about four times higher than the value in the low E-field case.In addition,the influences of the magnetic field,pressure and power on the electron density and electron temperature are demonstrated.It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances.However,the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not.Besides,the maximum of the electron density first increases and then decreases with magnetic field,while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum moving upwards to the driver region,and the symmetry of the electron temperature in the xz-plane becomes much better.As power increases,the electron density rises,whereas the spatial distribution is similar.It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters,while the power only has little effect.
文摘In this study, we propose a novel discrete-time coupled model to generate oscillatory responses via periodic points with a high periodic order. Our coupled system comprises one-dimensional oscillators based on the Rulkov map and a single globally coupled oscillator. Because the waveform of a one-dimensional oscillator has sharply defined peaks, the coupled system can be applied to dynamic image segmentation. Our proposed system iteratively transforms the coupling of each oscillator based on an input value that corresponds to the pixel value of an input image. This approach enables our system to segment image regions in which pixel values gradually change with respect to a connected region. We conducted a bifurcation analysis of a single oscillator and a three-coupled model. Through simulations, we demonstrated that our system works well for gray-level images with three isolated image regions.
基金supported by the National Key Basic Research and Development Program of China("973"Project)(Grant No.2010CB732101)the Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Grant No.SKLQ008)
文摘One kind of 3D coupled thermo-hydro-mechanical-migratory model for saturated-unsaturated dual-porosity medium was established,in which the stress field and the temperature field are single,but the seepage field and the concentration field are double,and the influences of sets,spaces,angles,continuity ratios,stiffness of fractures on the constitutive relationship of the medium can be considered.The relative three-dimensional program of finite element method was also developed.By comparing with the existing computation example,reliability of the model and the program were verified.Taking a hypothetical nuclear waste repository as a calculation example,the radioactive nuclide leak was simulated numerically with both the rock mass and the buffer being unsaturated media,and the temperatures,negative pore pressures,flow velocities,nuclide concentrations and normal stresses in the rock mass were investigated.The results showed that the temperatures,negative pore pressures and nuclide concentrations in the buffer all present nonlinear changes and distributions that even though the saturation degree in porosity is only about 1/9 of that in fracture,the flow velocity of underground water in fracture is about 6 times of that in porosity because the permeability coefficient of fracture is almost four orders higher than that of porosity,and that the regions of stress concentration occur at the vicinity of two sides of the boundary between buffer and disposal pit wall.
基金supported by the National Key Research and Development Program of China(No.2016YFB0600100)National Natural Science Foundation of China(No.51506195)the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning。
文摘The main compressor in a supercritical carbon dioxide(SCO2)Brayton cycle works near the critical point where the physical properties of CO_(2)are far away from the ideal gas.To investigate the effectiveness of the conventional one-dimensional(1D)loss models for predicting the performance of compressors working in such nontraditional conditions,detailed comparisons of 1D predicted performance,experimental data and threedimensional CFD results are made.A 1D analysis method with enthalpy and total pressure based loss system is developed for multistage SCO2 centrifugal compressors,and it is firstly validated against the experimental results of a single stage SCO2 centrifugal compressor from the Sandia National Laboratory.A good agreement of pressure ratios with experiments can be achieved by the 1D method.But the efficiency deviations reveal the potential deficiencies of the parasitic loss models.On the basis of the validation,a two-stage SCO2 centrifugal compressor is employed to do the evaluation.Three-dimensional CFD simulations are performed.Detailed comparisons are made between the CFD and the 1D results at different stations located in the compressor.The features of the deviations are analyzed in detail,as well as the reasons that might cause these deviations.
基金the EU RTN Haemodel Project(contract number HPRN-CT-2002-00270)and by an EPSRC Advanced Research Fellowship.
文摘Several lumped parameter,or zero-dimensional(0-D),models of the microcirculation are coupled in the time domain to the nonlinear,one-dimensional(1-D)equations of blood flow in large arteries.A linear analysis of the coupled system,together with in vivo observations,shows that:(i)an inflow resistance that matches the characteristic impedance of the terminal arteries is required to avoid non-physiological wave reflections;(ii)periodic mean pressures and flow distributions in large arteries depend on arterial and peripheral resistances,but not on the compliances and inertias of the system,which only affect instantaneous pressure and flow waveforms;(iii)peripheral inertias have a minor effect on pulse waveforms under normal conditions;and(iv)the time constant of the diastolic pressure decay is the same in any 1-D model artery,if viscous dissipation can be neglected in these arteries,and it depends on all the peripheral compliances and resistances of the system.Following this analysis,we propose an algorithm to accurately estimate peripheral resistances and compliances from in vivo data.This algorithm is verified against numerical data simulated using a 1-D model network of the 55 largest human arteries,in which the parameters of the peripheral windkessel outflow models are known a priori.Pressure and flow waveforms in the aorta and the first generation of bifurcations are reproduced with relative root-mean-square errors smaller than 3%.