This paper is concerned with the large-time behavior of solutions to the Cauchy problem of a one-dimensional viscous radiative and reactive gas.Based on the elaborate energy estimates,we develop a new approach to deri...This paper is concerned with the large-time behavior of solutions to the Cauchy problem of a one-dimensional viscous radiative and reactive gas.Based on the elaborate energy estimates,we develop a new approach to derive the upper bound of the absolute temperature by avoiding the use of auxiliary functions Z(t)and W(t)introduced by Liao and Zhao[J.Differential Equations,2018,265(5):2076-2120].Our results also improve upon the results obtained in Liao and Zhao[J.Differential Equations,2018,265(5):2076-2120].展开更多
This paper is concerned with the construction of global, large amplitude solu- tions to the Cauchy problem of the one-dimensional compressible Navier-Stokes system for a viscous radiative gas when the viscosity and he...This paper is concerned with the construction of global, large amplitude solu- tions to the Cauchy problem of the one-dimensional compressible Navier-Stokes system for a viscous radiative gas when the viscosity and heat conductivity coefficients depend on both specific volume and absolute temperature. The data are assumed to be without vacuum, mass concentrations, or vanishing temperatures, and the same is shown to be hold for the global solution constructed. The proof is based on some detailed analysis on uniform positive lower and upper bounds of the specific volume and absolute temperature.展开更多
We investigate the time-asymptotically nonlinear stability of rarefaction waves to the Cauchy problem of a one-dimensional compressible Navier-Stokes type system for a viscous,compressible,radiative and reactive gas,w...We investigate the time-asymptotically nonlinear stability of rarefaction waves to the Cauchy problem of a one-dimensional compressible Navier-Stokes type system for a viscous,compressible,radiative and reactive gas,where the constitutive relations for the pressure p,the speci c internal energy e,the speci c volume v,the absolute temperature θ,and the specific entropy s are given by p=Rθv+aθ^(4)/3,e=C_(v)θ+avθ^(4),and s=C_(v)lnθ+4avθ^(3)/3+Rln v with R>0,C_(v)>0 and a>0 being the perfect gas constant,the speci c heat and the radiation constant,respectively.For such a specific gas motion,a somewhat surprising fact is that,generally speaking,the pressure p(v,s)is not a convex function of the specific volume v and the specific entropy s.Even so,we show in this paper that the rarefaction waves are time-asymptotically stable for large initial perturbation provided that the radiation constant a and the strength of the rarefaction waves are sufficiently small.The key point in our analysis is to deduce the positive lower and upper bounds on the specific volume and the absolute temperature,which are uniform with respect to the space and the time variables,but are independent of the radiation constant a.展开更多
基金National Postdoctoral Program for Innovative Talents of China(BX20180054).
文摘This paper is concerned with the large-time behavior of solutions to the Cauchy problem of a one-dimensional viscous radiative and reactive gas.Based on the elaborate energy estimates,we develop a new approach to derive the upper bound of the absolute temperature by avoiding the use of auxiliary functions Z(t)and W(t)introduced by Liao and Zhao[J.Differential Equations,2018,265(5):2076-2120].Our results also improve upon the results obtained in Liao and Zhao[J.Differential Equations,2018,265(5):2076-2120].
基金supported by National Natural Science Foundation of China(11601398,11671309,11731008)
文摘This paper is concerned with the construction of global, large amplitude solu- tions to the Cauchy problem of the one-dimensional compressible Navier-Stokes system for a viscous radiative gas when the viscosity and heat conductivity coefficients depend on both specific volume and absolute temperature. The data are assumed to be without vacuum, mass concentrations, or vanishing temperatures, and the same is shown to be hold for the global solution constructed. The proof is based on some detailed analysis on uniform positive lower and upper bounds of the specific volume and absolute temperature.
基金supported by the Fundamental Research Funds for the Central Universities and National Natural Science Foundation of China(Grant Nos.11731008 and 11671309)supported by the Fundamental Research Funds for the Central Universities(Grant No.YJ201962)supported by National Postdoctoral Program for Innovative Talents of China(Grant No.BX20180054).
文摘We investigate the time-asymptotically nonlinear stability of rarefaction waves to the Cauchy problem of a one-dimensional compressible Navier-Stokes type system for a viscous,compressible,radiative and reactive gas,where the constitutive relations for the pressure p,the speci c internal energy e,the speci c volume v,the absolute temperature θ,and the specific entropy s are given by p=Rθv+aθ^(4)/3,e=C_(v)θ+avθ^(4),and s=C_(v)lnθ+4avθ^(3)/3+Rln v with R>0,C_(v)>0 and a>0 being the perfect gas constant,the speci c heat and the radiation constant,respectively.For such a specific gas motion,a somewhat surprising fact is that,generally speaking,the pressure p(v,s)is not a convex function of the specific volume v and the specific entropy s.Even so,we show in this paper that the rarefaction waves are time-asymptotically stable for large initial perturbation provided that the radiation constant a and the strength of the rarefaction waves are sufficiently small.The key point in our analysis is to deduce the positive lower and upper bounds on the specific volume and the absolute temperature,which are uniform with respect to the space and the time variables,but are independent of the radiation constant a.