期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:4
1
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1d-CNN) time series prediction state parameters
下载PDF
Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization
2
作者 Ahmad Yahiya Ahmad Bani Ahmad Jafar Alzubi +3 位作者 Sophers James Vincent Omollo Nyangaresi Chanthirasekaran Kutralakani Anguraju Krishnan 《Computers, Materials & Continua》 SCIE EI 2024年第9期4791-4812,共22页
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e... In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach. 展开更多
关键词 Human action recognition multi-modal sensor data and signals adaptive hybrid deep attentive network enhanced archerfish hunting optimizer 1d convolutional neural network gated recurrent units
下载PDF
Audiovisual speech recognition based on a deep convolutional neural network
3
作者 Shashidhar Rudregowda Sudarshan Patilkulkarni +2 位作者 Vinayakumar Ravi Gururaj H.L. Moez Krichen 《Data Science and Management》 2024年第1期25-34,共10页
Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for India... Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for Indian English linguistics and categorized it into three main categories:(1)audio recognition,(2)visual feature extraction,and(3)combined audio and visual recognition.Audio features were extracted using the mel-frequency cepstral coefficient,and classification was performed using a one-dimension convolutional neural network.Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks.Finally,integration was performed using a deep convolutional network.The audio speech of Indian English was successfully recognized with accuracies of 93.67%and 91.53%,respectively,using testing data from 200 epochs.The training accuracy for visual speech recognition using the Indian English dataset was 77.48%and the test accuracy was 76.19%using 60 epochs.After integration,the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67%and 91.75%,respectively. 展开更多
关键词 Audiovisual speech recognition Custom dataset 1d convolution neural network(CNN) deep CNN(dCNN) Long short-term memory(LSTM) Lipreading dlib Mel-frequency cepstral coefficient(MFCC)
下载PDF
基于1-D CNN的二阶段OFDM系统定时同步方法 被引量:1
4
作者 卿朝进 杨娜 +1 位作者 唐书海 饶川贵 《计算机应用研究》 CSCD 北大核心 2023年第2期565-570,共6页
针对存在多径干扰的正交频分复用系统的定时同步准确性低的问题,提出基于一维卷积神经网络(1-D CNN)的二阶段OFDM系统定时同步方法。在第一阶段,利用经典互相关方法实现路径特征初始抽取,捕获可分辨路径上的定时辅助同步点;基于定时辅... 针对存在多径干扰的正交频分复用系统的定时同步准确性低的问题,提出基于一维卷积神经网络(1-D CNN)的二阶段OFDM系统定时同步方法。在第一阶段,利用经典互相关方法实现路径特征初始抽取,捕获可分辨路径上的定时辅助同步点;基于定时辅助同步点构建1-D CNN网络学习第二阶段中的定时偏移;最后,结合两阶段处理,获得系统最终的定时同步偏移估计。相比于基于压缩感知的定时同步方法和基于极限学习机的定时同步方法,所研究的二阶段OFDM系统定时同步方法提高了定时同步准确性,并有效地降低计算复杂度与处理延迟。 展开更多
关键词 二阶段定时同步 一维卷积神经网络 正交频分复用
下载PDF
轻量级(2+1)D卷积结构的动态手势识别研究 被引量:3
5
作者 赵康 黎向锋 +1 位作者 李高扬 左敦稳 《微电子学与计算机》 2022年第9期46-54,共9页
目前,基于卷积神经网络的动态手势识别方法取得了巨大的进展,但神经网络模型具有很大的参数量,计算成本和内存占用较大,很难应用在设备资源有限的场合.以减少计算量和参数量为出发点,提出了一种轻量级(2+1)D卷积结构.该结构在(2+1)D卷... 目前,基于卷积神经网络的动态手势识别方法取得了巨大的进展,但神经网络模型具有很大的参数量,计算成本和内存占用较大,很难应用在设备资源有限的场合.以减少计算量和参数量为出发点,提出了一种轻量级(2+1)D卷积结构.该结构在(2+1)D卷积结构的基础上,将其中的3D卷积替换为3D深度可分离卷积,在输出向量维度不变的前提下,进一步减少了(2+1)D卷积结构的计算量和参数量.为了弥补时空特征在表征动态手势上的不足,融合注意力机制模块,专注于对运动特征的提取,结合轻量级(2+1)D卷积结构提取的时空特征,可以更好地表征手势动作.实验结果表明,注意力机制模块的插入,在不增加太多额外计算和空间成本的前提下,进一步提高了模型的识别精度.基于以上结构构建的模型,在20BN-jester、EgoGesture和IsoGD数据集上分别取得了96.62%、91.83%和60.1%的识别精度,模型参数量和浮点计算量分别为5.05M和12.81GFLOPs,相比于其他手势识别模型,计算成本和内存占用大大减少,实时手势识别速度达到每秒70帧. 展开更多
关键词 动态手势识别 卷积神经网络 轻量级(2+1)d卷积结构 注意力机制
下载PDF
Automatic Classification of Swedish Metadata Using Dewey Decimal Classification:A Comparison of Approaches 被引量:1
6
作者 Koraljka Golub Johan Hagelback Anders Ardo 《Journal of Data and Information Science》 CSCD 2020年第1期18-38,共21页
Purpose:With more and more digital collections of various information resources becoming available,also increasing is the challenge of assigning subject index terms and classes from quality knowledge organization syst... Purpose:With more and more digital collections of various information resources becoming available,also increasing is the challenge of assigning subject index terms and classes from quality knowledge organization systems.While the ultimate purpose is to understand the value of automatically produced Dewey Decimal Classification(DDC)classes for Swedish digital collections,the paper aims to evaluate the performance of six machine learning algorithms as well as a string-matching algorithm based on characteristics of DDC.Design/methodology/approach:State-of-the-art machine learning algorithms require at least 1,000 training examples per class.The complete data set at the time of research involved 143,838 records which had to be reduced to top three hierarchical levels of DDC in order to provide sufficient training data(totaling 802 classes in the training and testing sample,out of 14,413 classes at all levels).Findings:Evaluation shows that Support Vector Machine with linear kernel outperforms other machine learning algorithms as well as the string-matching algorithm on average;the string-matching algorithm outperforms machine learning for specific classes when characteristics of DDC are most suitable for the task.Word embeddings combined with different types of neural networks(simple linear network,standard neural network,1 D convolutional neural network,and recurrent neural network)produced worse results than Support Vector Machine,but reach close results,with the benefit of a smaller representation size.Impact of features in machine learning shows that using keywords or combining titles and keywords gives better results than using only titles as input.Stemming only marginally improves the results.Removed stop-words reduced accuracy in most cases,while removing less frequent words increased it marginally.The greatest impact is produced by the number of training examples:81.90%accuracy on the training set is achieved when at least 1,000 records per class are available in the training set,and 66.13%when too few records(often less than A Comparison of Approaches100 per class)on which to train are available—and these hold only for top 3 hierarchical levels(803 instead of 14,413 classes).Research limitations:Having to reduce the number of hierarchical levels to top three levels of DDC because of the lack of training data for all classes,skews the results so that they work in experimental conditions but barely for end users in operational retrieval systems.Practical implications:In conclusion,for operative information retrieval systems applying purely automatic DDC does not work,either using machine learning(because of the lack of training data for the large number of DDC classes)or using string-matching algorithm(because DDC characteristics perform well for automatic classification only in a small number of classes).Over time,more training examples may become available,and DDC may be enriched with synonyms in order to enhance accuracy of automatic classification which may also benefit information retrieval performance based on DDC.In order for quality information services to reach the objective of highest possible precision and recall,automatic classification should never be implemented on its own;instead,machine-aided indexing that combines the efficiency of automatic suggestions with quality of human decisions at the final stage should be the way for the future.Originality/value:The study explored machine learning on a large classification system of over 14,000 classes which is used in operational information retrieval systems.Due to lack of sufficient training data across the entire set of classes,an approach complementing machine learning,that of string matching,was applied.This combination should be explored further since it provides the potential for real-life applications with large target classification systems. 展开更多
关键词 LIBRIS dewey decimal Classification Automatic classification Machine learning Support Vector Machine Multinomial Naive Bayes Simple linear network Standard neural network 1d convolutional neural network Recurrent neural network Word embeddings String matching
下载PDF
基于SANC和一维卷积神经网络的齿轮箱轴承故障诊断 被引量:17
7
作者 高佳豪 郭瑜 伍星 《振动与冲击》 EI CSCD 北大核心 2020年第19期204-209,257,共7页
近来以深度学习算法为代表的滚动轴承特征智能提取和故障辨识技术被广泛研究,但目前研究大多局限于无强干扰的轴承故障。在齿轮箱存在较强齿轮振动干扰条件下,基于此类算法的轴承故障辨识率将显著降低。为提高在较强齿轮振动信号干扰下... 近来以深度学习算法为代表的滚动轴承特征智能提取和故障辨识技术被广泛研究,但目前研究大多局限于无强干扰的轴承故障。在齿轮箱存在较强齿轮振动干扰条件下,基于此类算法的轴承故障辨识率将显著降低。为提高在较强齿轮振动信号干扰下齿轮箱轴承故障智能辨识的准确率,提出了一种基于自参考自适应噪声消除技术(SANC)和一维卷积神经网络(1D-CNN)的齿轮箱轴承故障诊断方法。首先利用SANC将齿轮箱振动信号分离为周期性信号分量成分和随机信号分量,抑制齿轮等周期强干扰成分,再通过1D-CNN对包含轴承故障特征的随机信号成分进行智能特征提取和识别,实现在齿轮振动干扰下齿轮箱轴承故障辨识率的提高。通过与不同方法的对比验证了本文所提方法的优势和有效性。 展开更多
关键词 齿轮箱 自参考自适应噪声消除技术 一维卷积神经网络 故障诊断
下载PDF
(2+1)D多时空信息融合模型及在行为识别的应用 被引量:3
8
作者 谈咏东 王永雄 +1 位作者 陈姝意 缪银龙 《信息与控制》 CSCD 北大核心 2019年第6期715-722,共8页
针对常规的卷积神经网络时空感受野尺度单一,难以提取视频中多变的时空信息的问题,利用(2+1)D模型将时间信息和空间信息在一定程度上解耦的特性,提出了(2+1)D多时空信息融合的卷积残差神经网络,并用于人体行为识别.该模型以3×3空... 针对常规的卷积神经网络时空感受野尺度单一,难以提取视频中多变的时空信息的问题,利用(2+1)D模型将时间信息和空间信息在一定程度上解耦的特性,提出了(2+1)D多时空信息融合的卷积残差神经网络,并用于人体行为识别.该模型以3×3空间感受野为主,1×1空间感受野为辅,与3种不同时域感受野交叉组合构建了6种不同尺度的时空感受野.提出的多时空感受野融合模型能够同时获取不同尺度的时空信息,提取更丰富的人体行为特征,因此能够更有效识别不同时间周期、不同动作幅度的人体行为.另外提出了一种视频时序扩充方法,该方法能够同时在空间信息和时间序列扩充视频数据集,丰富训练样本.提出的方法在公共视频人体行为数据集UCF101和HMDB51上子视频的识别率超过或接近最新的视频行为识别方法. 展开更多
关键词 时空信息融合 人体行为识别 (2+1)d卷积残差神经网络 感受野 卷积神经网络
原文传递
基于一维卷积神经网络的驾驶人身份识别方法 被引量:11
9
作者 胡宏宇 刘家瑞 +3 位作者 高菲 高振海 梅兴泰 杨光 《中国公路学报》 EI CAS CSCD 北大核心 2020年第8期195-203,共9页
近年来,智能网联汽车(ICV)已成为智能工业时代最有前景的发展方向。作为现代移动的重要模式,ICV的设计和开发越来越强调个性化需求。提出一种仅使用车载CAN总线行车状态数据,基于深度学习的驾驶人身份识别通用框架。首先采集20名驾驶人... 近年来,智能网联汽车(ICV)已成为智能工业时代最有前景的发展方向。作为现代移动的重要模式,ICV的设计和开发越来越强调个性化需求。提出一种仅使用车载CAN总线行车状态数据,基于深度学习的驾驶人身份识别通用框架。首先采集20名驾驶人在固定试验路线下,包括不同道路类型、不同交通条件下的自然驾驶行车状态数据集;其次对9种类型的CAN信号行车数据进行数据清洗与重采样,构建数据样本集。搭建了由卷积层、池化层、全连接层、SoftMax层构成的一维卷积神经网络(1-D CNN)驾驶人身份识别模型,并且使用Adam算法、L2正则化、Dropout、小批量梯度下降等方法对模型性能进行优化。算法验证过程中,探讨了模型卷积核占比、卷积核数量、卷积层层数、全连接层节点规模对模型识别准确率的影响,进而对模型结构参数进行优选。进一步地,将该算法与K近邻(KNN)、支持向量机(SVM)、多层感知器(MLP)等传统机器学习方法及深度学习算法长短时记忆网络(LSTM)进行对比分析,同时探究样本时间窗口大小、样本数据重叠度、驾驶人数量对模型识别结果的影响。在数据时间窗口为1s、数据重合度80%的条件下,对20名驾驶人进行识别,评价指标宏观F1分数可达99.1%,表明该模型表现明显优于其他对比模型算法,其对驾驶人身份识别表现稳定,鲁棒性强。 展开更多
关键词 汽车工程 智能网联汽车 一维卷积神经网络 驾驶人身份识别 行车数据 深度学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部