Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many...Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many intrusion detection systems learn and prevent known scenarios,but because malicious behavior has similar patterns to normal behavior,in reality,these systems can be evaded.Furthermore,because insider threats share a feature space similar to normal behavior,identifying them by detecting anomalies has limitations.This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete wavelet transformation technique is applied to classify normal vs.malicious users.The discrete wavelet transformation technique easily discovers new patterns or decomposes synthesized data,making it possible to distinguish between shared characteristics.To verify the efficacy of the proposed methodology,experiments were conducted in which normal users and malicious users were classified based on insider threat scenarios provided in Carnegie Mellon University’s Computer Emergency Response Team(CERT)dataset.The experimental results indicate that the proposed methodology with discrete wavelet transformation reduced the false-positive rate by 82%to 98%compared to the case with no wavelet applied.Thus,the proposed methodology has high potential for application to similar feature spaces.展开更多
The aim of this study is to carry out hydrothermal alteration mapping and structural mapping using ASTER images in order to identify indices that could guide mining exploration work in the Poli area and its surroundin...The aim of this study is to carry out hydrothermal alteration mapping and structural mapping using ASTER images in order to identify indices that could guide mining exploration work in the Poli area and its surroundings. To achieve this, the ASTER images were first preprocessed to correct atmospheric effects and remove vegetation influence. Secondly, a lineament mapping was conducted by applying Discrete Wavelet Transform (DWT) algorithms to the First Principal Component Analysis (PCA1) of Visible Near-Infrared (VNIR) and Shortwave Infrared (SWIR) bands. Lastly, band ratio methods were applied to the VNIR, SWIR, and Thermal Infrared (TIR) bands to determine indices of iron oxides/hydroxides (hematite and limonite), hydroxyl-bearing minerals (chlorite, epidote, and muscovite), and the quartz index. The results obtained showed that the lineaments were mainly oriented NE-SW, ENE-WSW, and E-W, with NE-SW being the most predominant direction. Concerning hydrothermal alteration, the identified indices covered almost the entire study area and showed a strong correlation with lithological data. Overlaying the obtained lineaments with the hydrothermal alteration indices revealed a significant correlation between existing mining indices and those observed in the field. Mineralized zones generally coincided with areas of high lineament density exhibiting significant hydrothermal alteration. Based on the correlation between existing mining indices and the results of hydrothermal and structural mapping, the results obtained can then be used as a reference document for any mining exploration in the study area.展开更多
Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presen...Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presents a new digital watermarking scheme that combines some operators of the Genetic Algorithm (GA) and the Residue Number (RN) System (RNS) to perform encryption on an image, which is embedded into a cover image for the purposes of watermarking. Thus, an image watermarking scheme uses an encrypted image. The secret image is embedded in decomposed frames of the cover image achieved by applying a three-level Discrete Wavelet Transform (DWT). This is to ensure that the secret information is not exposed even when there is a successful attack on the cover information. Content creators can prove ownership of the multimedia content by unveiling the secret information in a court of law. The proposed scheme was tested with sample data using MATLAB2022 and the results of the simulation show a great deal of imperceptibility and robustness as compared to similar existing schemes.展开更多
In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
This paper presents discrete wavelet transform (DWT) and its inverse (IDWT) with Haar wavelets as tools to compute the variable size interpolated versions of an image at optimum computational load. As a human obse...This paper presents discrete wavelet transform (DWT) and its inverse (IDWT) with Haar wavelets as tools to compute the variable size interpolated versions of an image at optimum computational load. As a human observer moves closer to or farther from a scene, the retinal image of the scene zooms in or out, respectively. This zooming in or out can be modeled using variable scale interpolation. The paper proposes a novel way of applying DWT and IDWT in a piecewise manner by non-uniform down- or up-sampling of the images to achieve partially sampled versions of the images. The partially sampled versions are then aggregated to achieve the final variable scale interpolated images. The non-uniform down- or up-sampling here is a function of the required scale of interpolation. Appropriate zero padding is used to make the images suitable for the required non-uniform sampling and the subsequent interpolation to the required scale. The concept of zeroeth level DWT is introduced here, which works as the basis for interpolating the images to achieve bigger size than the original one. The main emphasis here is on the computation of variable size images at less computational load, without compromise of quality of images. The interpolated images to different sizes and the reconstructed images are benchmarked using the statistical parameters and visual comparison. It has been found that the proposed approach performs better as compared to bilinear and bicubic interpolation techniques.展开更多
In this paper, we summarize the human emotion recognition using different set of electroencephalogram (EEG) channels using discrete wavelet transform. An audio-visual induction based protocol has been designed with mo...In this paper, we summarize the human emotion recognition using different set of electroencephalogram (EEG) channels using discrete wavelet transform. An audio-visual induction based protocol has been designed with more dynamic emotional content for inducing discrete emotions (disgust, happy, surprise, fear and neutral). EEG signals are collected using 64 electrodes from 20 subjects and are placed over the entire scalp using International 10-10 system. The raw EEG signals are preprocessed using Surface Laplacian (SL) filtering method and decomposed into three different frequency bands (alpha, beta and gamma) using Discrete Wavelet Transform (DWT). We have used “db4” wavelet function for deriving a set of conventional and modified energy based features from the EEG signals for classifying emotions. Two simple pattern classification methods, K Nearest Neighbor (KNN) and Linear Discriminant Analysis (LDA) methods are used and their performances are compared for emotional states classification. The experimental results indicate that, one of the proposed features (ALREE) gives the maximum average classification rate of 83.26% using KNN and 75.21% using LDA compared to those of conventional features. Finally, we present the average classification rate and subsets of emotions classification rate of these two different classifiers for justifying the performance of our emotion recognition system.展开更多
Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in...Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.展开更多
Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavele...Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering.展开更多
Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image w...Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties.This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform(DWT),Z-transform(ZT)and Bidiagonal Singular Value Decomposition(BSVD).The original image is decomposed into 3-level DWT,and then,ZT is applied on the HH3 and HL3 sub-bands.The watermark image is encrypted using Arnold Cat Map.BSVD for the watermark and transformed original image were computed,and the watermark was embedded by modifying singular values of the host image with the singular values of the watermark image.Robustness of the proposed scheme was examined using standard test images and assessed against common signal processing and geometric attacks.Experiments indicated that the proposed method is transparent and highly robust.展开更多
A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT ha...A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, compared to that of DCHWT.展开更多
This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency ...This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency division multiple access(OFDMA)with extra advantage of low Peak to Average Power Ratio(PAPR). Moreover,this article also suggests the application of Walsh Hadamard transform(WHT)for linear precoding(LP)to improve the PAPR performance of the system. Supremacy of the proposed transceiver over conventional Fast Fourier transform(FFT)based SCFDMA is shown through simulated results in terms of PAPR,spectral efficiency(SE)and bit error rate(BER).展开更多
The paper describes a texture-based fast text location scheme which operates directly in the Discrete Wavelet Transform (DWT) domain. By the distinguishing texture characteristics encoded in wavelet transform domain, ...The paper describes a texture-based fast text location scheme which operates directly in the Discrete Wavelet Transform (DWT) domain. By the distinguishing texture characteristics encoded in wavelet transform domain, the text is fast detected from complex background images stored in the compressed format such as JPEG2000 without full decompress. Compared with some traditional character location methods, the proposed scheme has the advantages of low computational cost, robust to size and font of characters and high accuracy. Preliminary experimental results show that the proposed scheme is efficient and effective.展开更多
This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized ...This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.展开更多
This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Tra...This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Transform (DWT), to de-noise PD and Time-Of-Arrival method to separate PD sources. Furthermore, it will be shown that it can recognize PD sources including rotating machine’s internal and external discharge pulses (e.g. on the bus bar).展开更多
Efficient reconfigurable VLSI architecture for 1-D 5/3 and 9/7 wavelet transforms adopted in JPEG2000 proposal, based on lifting scheme is proposed. The embedded decimation technique based on fold and time multiplexin...Efficient reconfigurable VLSI architecture for 1-D 5/3 and 9/7 wavelet transforms adopted in JPEG2000 proposal, based on lifting scheme is proposed. The embedded decimation technique based on fold and time multiplexing, as well as embedded boundary data extension technique, is adopted to optimize the design of the architecture. These reduce significantly the required numbers of the multipliers, adders and registers, as well as the amount of accessing external memory, and lead to decrease efficiently the hardware cost and power consumption of the design. The architecture is designed to generate an output per clock cycle, and the detailed component and the approximation of the input signal are available alternately. Experimental simulation and comparison results are presented, which demonstrate that the proposed architecture has lower hardware complexity, thus it is adapted for embedded applications. The presented architecture is simple, regular and scalable, and well suited for VLSI implementation.展开更多
Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods...Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods: Two independent datasets from serum samples of 253 ovarian cancer and 167 breast cancer patients were used. The samples were examined by surface- enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The datasets were used to extract the informative proteins using a data-mining method in the discrete stationary wavelet transform domain. As a dimensionality re- duction procedure, the hard thresholding method was applied to reduce the number of wavelet coefficients. Also, a distance measure was used to select the most discriminative coefficients. To find the potential biomarkers using the selected wavelet coefficients, we applied the inverse discrete stationary wavelet transform combined with a two-sided t-test. Results: From the ovarian cancer dataset, a set of five proteins were detected as potential biomarkers that could be used to identify the cancer patients from the healthy cases with accuracy, sensitivity, and specificity of 100%. Also, from the breast cancer dataset, a set of eight proteins were found as the potential biomarkers that could separate the healthy cases from the cancer patients with accuracy of 98.26%, sensitivity of 100%, and specificity of 95.6%. Conclusion: The results have shown that the new bioinformatic tool can be used in combination with the high-throughput proteomic data such as SELDI-TOF MS to find the potential biomarkers with high discriminative power.展开更多
Objective:To define the level of alarm threshold for pertussisaberrations and to detect the aberrations of the reported suspectedcases of pertussis from the Mazandaran province in the north ofIran.Methods:The included...Objective:To define the level of alarm threshold for pertussisaberrations and to detect the aberrations of the reported suspectedcases of pertussis from the Mazandaran province in the north ofIran.Methods:The included cases were composed of the suspectedpertussis patients who came from Mazandaran province andregistered in the Center for Disease Control and Prevention from20 March 2012 to 20 March 2018.A discrete wavelet transformbasedmethod was used to detect the aberrations.All analyseswere performed using MATLAB Software version 2018a andExcel 2010.Results:A total of 1162 cases were recruited in the study,including 545(46.90%)males and 617(53.10%)females,withmedian age of 1.47(0.22-9.56)years.The median age of maleswas 1.18(0.21-8.24)years,while that of females was 1.82(0.21-10.75)years.Concerning the level of the alarm threshold,it was1.28 case/d when k=2,while it was 1.34 case/d when k=3.Thetotal detected aberration days were 123 d and 57 d by consideringk=2 and 3,respectively.The most defined alarm threshold wasrelated to spring(>2 cases/d)and summer(>1 case/d),respectively.Conclusions:The sensitivity of the surveillance system issubjected to a different time.Thus,determining the level of alarmthreshold periodically using different methods is recommended.展开更多
This paper presents a spikes removing methodology for ultrasonic rangefinders with an application to a quadrotor unmanned aerial vehicle. Ultrasonic sensors suffer from spikes in distance measurements due to specular ...This paper presents a spikes removing methodology for ultrasonic rangefinders with an application to a quadrotor unmanned aerial vehicle. Ultrasonic sensors suffer from spikes in distance measurements due to specular reflectance and acoustic noise. Removing these spikes is necessary for improving the hovering performance of the quadrotor. The spikes removing algorithm is based on the discrete wavelet transform. The algorithm is implemented in simulation to study the effect of the altitude measurement spikes on the control performance of the quadrotor with and without the algorithm. The algorithm is also implemented digitally on ultrasonic measurements from a real flight. Results show that the method is capable of rejecting the spikes in the measurements efficiently leaving the altitude control signal unaffected.展开更多
This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, ...This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.展开更多
Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possi...Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.展开更多
基金This work was supported by the Research Program through the National Research Foundation of Korea,NRF-2022R1F1A1073375。
文摘Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many intrusion detection systems learn and prevent known scenarios,but because malicious behavior has similar patterns to normal behavior,in reality,these systems can be evaded.Furthermore,because insider threats share a feature space similar to normal behavior,identifying them by detecting anomalies has limitations.This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete wavelet transformation technique is applied to classify normal vs.malicious users.The discrete wavelet transformation technique easily discovers new patterns or decomposes synthesized data,making it possible to distinguish between shared characteristics.To verify the efficacy of the proposed methodology,experiments were conducted in which normal users and malicious users were classified based on insider threat scenarios provided in Carnegie Mellon University’s Computer Emergency Response Team(CERT)dataset.The experimental results indicate that the proposed methodology with discrete wavelet transformation reduced the false-positive rate by 82%to 98%compared to the case with no wavelet applied.Thus,the proposed methodology has high potential for application to similar feature spaces.
文摘The aim of this study is to carry out hydrothermal alteration mapping and structural mapping using ASTER images in order to identify indices that could guide mining exploration work in the Poli area and its surroundings. To achieve this, the ASTER images were first preprocessed to correct atmospheric effects and remove vegetation influence. Secondly, a lineament mapping was conducted by applying Discrete Wavelet Transform (DWT) algorithms to the First Principal Component Analysis (PCA1) of Visible Near-Infrared (VNIR) and Shortwave Infrared (SWIR) bands. Lastly, band ratio methods were applied to the VNIR, SWIR, and Thermal Infrared (TIR) bands to determine indices of iron oxides/hydroxides (hematite and limonite), hydroxyl-bearing minerals (chlorite, epidote, and muscovite), and the quartz index. The results obtained showed that the lineaments were mainly oriented NE-SW, ENE-WSW, and E-W, with NE-SW being the most predominant direction. Concerning hydrothermal alteration, the identified indices covered almost the entire study area and showed a strong correlation with lithological data. Overlaying the obtained lineaments with the hydrothermal alteration indices revealed a significant correlation between existing mining indices and those observed in the field. Mineralized zones generally coincided with areas of high lineament density exhibiting significant hydrothermal alteration. Based on the correlation between existing mining indices and the results of hydrothermal and structural mapping, the results obtained can then be used as a reference document for any mining exploration in the study area.
文摘Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presents a new digital watermarking scheme that combines some operators of the Genetic Algorithm (GA) and the Residue Number (RN) System (RNS) to perform encryption on an image, which is embedded into a cover image for the purposes of watermarking. Thus, an image watermarking scheme uses an encrypted image. The secret image is embedded in decomposed frames of the cover image achieved by applying a three-level Discrete Wavelet Transform (DWT). This is to ensure that the secret information is not exposed even when there is a successful attack on the cover information. Content creators can prove ownership of the multimedia content by unveiling the secret information in a court of law. The proposed scheme was tested with sample data using MATLAB2022 and the results of the simulation show a great deal of imperceptibility and robustness as compared to similar existing schemes.
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
文摘This paper presents discrete wavelet transform (DWT) and its inverse (IDWT) with Haar wavelets as tools to compute the variable size interpolated versions of an image at optimum computational load. As a human observer moves closer to or farther from a scene, the retinal image of the scene zooms in or out, respectively. This zooming in or out can be modeled using variable scale interpolation. The paper proposes a novel way of applying DWT and IDWT in a piecewise manner by non-uniform down- or up-sampling of the images to achieve partially sampled versions of the images. The partially sampled versions are then aggregated to achieve the final variable scale interpolated images. The non-uniform down- or up-sampling here is a function of the required scale of interpolation. Appropriate zero padding is used to make the images suitable for the required non-uniform sampling and the subsequent interpolation to the required scale. The concept of zeroeth level DWT is introduced here, which works as the basis for interpolating the images to achieve bigger size than the original one. The main emphasis here is on the computation of variable size images at less computational load, without compromise of quality of images. The interpolated images to different sizes and the reconstructed images are benchmarked using the statistical parameters and visual comparison. It has been found that the proposed approach performs better as compared to bilinear and bicubic interpolation techniques.
文摘In this paper, we summarize the human emotion recognition using different set of electroencephalogram (EEG) channels using discrete wavelet transform. An audio-visual induction based protocol has been designed with more dynamic emotional content for inducing discrete emotions (disgust, happy, surprise, fear and neutral). EEG signals are collected using 64 electrodes from 20 subjects and are placed over the entire scalp using International 10-10 system. The raw EEG signals are preprocessed using Surface Laplacian (SL) filtering method and decomposed into three different frequency bands (alpha, beta and gamma) using Discrete Wavelet Transform (DWT). We have used “db4” wavelet function for deriving a set of conventional and modified energy based features from the EEG signals for classifying emotions. Two simple pattern classification methods, K Nearest Neighbor (KNN) and Linear Discriminant Analysis (LDA) methods are used and their performances are compared for emotional states classification. The experimental results indicate that, one of the proposed features (ALREE) gives the maximum average classification rate of 83.26% using KNN and 75.21% using LDA compared to those of conventional features. Finally, we present the average classification rate and subsets of emotions classification rate of these two different classifiers for justifying the performance of our emotion recognition system.
文摘Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.
基金supported by the Open Foundation of Jiangsu Engineering Center of Network Monitoring(Nanjing University of Information Science&Technology)(Grant No.KJR1509)the PAPD fundthe CICAEET fund
文摘Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering.
文摘Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties.This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform(DWT),Z-transform(ZT)and Bidiagonal Singular Value Decomposition(BSVD).The original image is decomposed into 3-level DWT,and then,ZT is applied on the HH3 and HL3 sub-bands.The watermark image is encrypted using Arnold Cat Map.BSVD for the watermark and transformed original image were computed,and the watermark was embedded by modifying singular values of the host image with the singular values of the watermark image.Robustness of the proposed scheme was examined using standard test images and assessed against common signal processing and geometric attacks.Experiments indicated that the proposed method is transparent and highly robust.
文摘A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, compared to that of DCHWT.
文摘This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency division multiple access(OFDMA)with extra advantage of low Peak to Average Power Ratio(PAPR). Moreover,this article also suggests the application of Walsh Hadamard transform(WHT)for linear precoding(LP)to improve the PAPR performance of the system. Supremacy of the proposed transceiver over conventional Fast Fourier transform(FFT)based SCFDMA is shown through simulated results in terms of PAPR,spectral efficiency(SE)and bit error rate(BER).
基金Supported by the National Natural Science Foundation of China(No.60402036)the Natural Science Foundation of Beijing(No.4042008).
文摘The paper describes a texture-based fast text location scheme which operates directly in the Discrete Wavelet Transform (DWT) domain. By the distinguishing texture characteristics encoded in wavelet transform domain, the text is fast detected from complex background images stored in the compressed format such as JPEG2000 without full decompress. Compared with some traditional character location methods, the proposed scheme has the advantages of low computational cost, robust to size and font of characters and high accuracy. Preliminary experimental results show that the proposed scheme is efficient and effective.
文摘This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.
文摘This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Transform (DWT), to de-noise PD and Time-Of-Arrival method to separate PD sources. Furthermore, it will be shown that it can recognize PD sources including rotating machine’s internal and external discharge pulses (e.g. on the bus bar).
文摘Efficient reconfigurable VLSI architecture for 1-D 5/3 and 9/7 wavelet transforms adopted in JPEG2000 proposal, based on lifting scheme is proposed. The embedded decimation technique based on fold and time multiplexing, as well as embedded boundary data extension technique, is adopted to optimize the design of the architecture. These reduce significantly the required numbers of the multipliers, adders and registers, as well as the amount of accessing external memory, and lead to decrease efficiently the hardware cost and power consumption of the design. The architecture is designed to generate an output per clock cycle, and the detailed component and the approximation of the input signal are available alternately. Experimental simulation and comparison results are presented, which demonstrate that the proposed architecture has lower hardware complexity, thus it is adapted for embedded applications. The presented architecture is simple, regular and scalable, and well suited for VLSI implementation.
文摘Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods: Two independent datasets from serum samples of 253 ovarian cancer and 167 breast cancer patients were used. The samples were examined by surface- enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The datasets were used to extract the informative proteins using a data-mining method in the discrete stationary wavelet transform domain. As a dimensionality re- duction procedure, the hard thresholding method was applied to reduce the number of wavelet coefficients. Also, a distance measure was used to select the most discriminative coefficients. To find the potential biomarkers using the selected wavelet coefficients, we applied the inverse discrete stationary wavelet transform combined with a two-sided t-test. Results: From the ovarian cancer dataset, a set of five proteins were detected as potential biomarkers that could be used to identify the cancer patients from the healthy cases with accuracy, sensitivity, and specificity of 100%. Also, from the breast cancer dataset, a set of eight proteins were found as the potential biomarkers that could separate the healthy cases from the cancer patients with accuracy of 98.26%, sensitivity of 100%, and specificity of 95.6%. Conclusion: The results have shown that the new bioinformatic tool can be used in combination with the high-throughput proteomic data such as SELDI-TOF MS to find the potential biomarkers with high discriminative power.
基金The authors would like to express their appreciation for the Iranian Ministry of Health and Center for Communicable Diseases Control for their constant support and collaboration.This article was extracted from the Ph.D.thesis by Yousef Alimohamadi and financially supported by Tehran University of Medical Sciences.
文摘Objective:To define the level of alarm threshold for pertussisaberrations and to detect the aberrations of the reported suspectedcases of pertussis from the Mazandaran province in the north ofIran.Methods:The included cases were composed of the suspectedpertussis patients who came from Mazandaran province andregistered in the Center for Disease Control and Prevention from20 March 2012 to 20 March 2018.A discrete wavelet transformbasedmethod was used to detect the aberrations.All analyseswere performed using MATLAB Software version 2018a andExcel 2010.Results:A total of 1162 cases were recruited in the study,including 545(46.90%)males and 617(53.10%)females,withmedian age of 1.47(0.22-9.56)years.The median age of maleswas 1.18(0.21-8.24)years,while that of females was 1.82(0.21-10.75)years.Concerning the level of the alarm threshold,it was1.28 case/d when k=2,while it was 1.34 case/d when k=3.Thetotal detected aberration days were 123 d and 57 d by consideringk=2 and 3,respectively.The most defined alarm threshold wasrelated to spring(>2 cases/d)and summer(>1 case/d),respectively.Conclusions:The sensitivity of the surveillance system issubjected to a different time.Thus,determining the level of alarmthreshold periodically using different methods is recommended.
文摘This paper presents a spikes removing methodology for ultrasonic rangefinders with an application to a quadrotor unmanned aerial vehicle. Ultrasonic sensors suffer from spikes in distance measurements due to specular reflectance and acoustic noise. Removing these spikes is necessary for improving the hovering performance of the quadrotor. The spikes removing algorithm is based on the discrete wavelet transform. The algorithm is implemented in simulation to study the effect of the altitude measurement spikes on the control performance of the quadrotor with and without the algorithm. The algorithm is also implemented digitally on ultrasonic measurements from a real flight. Results show that the method is capable of rejecting the spikes in the measurements efficiently leaving the altitude control signal unaffected.
基金the Natural Science Foundation of China (No.60472037).
文摘This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.
文摘Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.