Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface ex...Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.展开更多
Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward ...Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low- resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source.展开更多
Based on the pseudo-analytical equation of electromagnetic log for layered formation,an optimal boundary match method is proposed to adaptively truncate the encountered formation structures.An efficient integral metho...Based on the pseudo-analytical equation of electromagnetic log for layered formation,an optimal boundary match method is proposed to adaptively truncate the encountered formation structures.An efficient integral method is put forward to significantly accelerate the convergence of Sommerfeld integral.By asymptotically approximating and subtracting the first reflection/transmission waves from the scattered field,the new Sommerfeld integral method has addressed difficulties encountered by the traditional digital filtering method,such as low computational precision and limited operating range,and realized the acceleration of the computation speed of logging-while-drilling electromagnetic measurements(LWD EM).By making use of the priori information from the offset/pilot wells and interactively adjusting the formation model,the optimum initial guesses of the inversion model is determined in order to predict the nearby formation boundaries.The gradient optimization algorithm is developed and an interactive inversion system for the LWD EM data from the horizontal wells is established.The inverted results of field data demonstrated that the real-time interactive inversion method is capable of providing the accurate boundaries of layers around the wellbore from the LWD EM,and it will benefit the wellbore trajectory optimization and reservoir interpretation.展开更多
With the development of gravity gradient full tensor measurement technique,three-dimensional( 3D) inversion based on gravity gradient tensor can provide more accurate information. But the forward calculation of 3D ful...With the development of gravity gradient full tensor measurement technique,three-dimensional( 3D) inversion based on gravity gradient tensor can provide more accurate information. But the forward calculation of 3D full tensor sensitivity matrix is very time-consuming,which restricts its development and application.According to the symmetry of the kernel function,the authors reconstruct the underground source of geological body to avoid repeat computation of the same value,and work out the corresponding relationship between the response of geological body to the observation point and the response of reconstructed geological body to the observation point. According to the relationship,rapid calculation of full tensor gravity sensitivity matrix can be achieved. The model calculation shows that this method can increase the speed of 30-45 times compared with the traditional calculation method. The sensitivity matrix is applied to the multi-component inversion of gravity gradient. The application of this method on the measured data provides the basis for the promotion of the method.展开更多
The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy ...The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.展开更多
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim...The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.展开更多
Neural networks with physical governing equations as constraints have recently created a new trend in machine learning research.In this context,a review of related research is first presented and discussed.The potenti...Neural networks with physical governing equations as constraints have recently created a new trend in machine learning research.In this context,a review of related research is first presented and discussed.The potential offered by such physics-informed deep learning models for computations in geomechanics is demonstrated by application to one-dimensional(1D)consolidation.The governing equation for 1D problems is applied as a constraint in the deep learning model.The deep learning model relies on automatic differentiation for applying the governing equation as a constraint,based on the mathematical approximations established by the neural network.The total loss is measured as a combination of the training loss(based on analytical and model predicted solutions)and the constraint loss(a requirement to satisfy the governing equation).Two classes of problems are considered:forward and inverse problems.The forward problems demonstrate the performance of a physically constrained neural network model in predicting solutions for 1D consolidation problems.Inverse problems show prediction of the coefficient of consolidation.Terzaghi’s problem,with varying boundary conditions,is used as a numerical example and the deep learning model shows a remarkable performance in both the forward and inverse problems.While the application demonstrated here is a simple 1D consolidation problem,such a deep learning model integrated with a physical law has significant implications for use in,such as,faster realtime numerical prediction for digital twins,numerical model reproducibility and constitutive model parameter optimization.展开更多
Due to the induced polarization(IP)eff ect,the sign reversal often occurs in timedomain airborne electromagnetic(AEM)data.The inversions that do not consider IP eff ect cannot recover the true umderground electrical s...Due to the induced polarization(IP)eff ect,the sign reversal often occurs in timedomain airborne electromagnetic(AEM)data.The inversions that do not consider IP eff ect cannot recover the true umderground electrical structures.In view of the fact that there are many parameters of airborne induced polarization data in time domain,and the sensitivity diff erence between parameters is large,which brings challenges to the stability and accuracy of the inversion.In this paper,we propose an inversion mehtod for time-domain AEM data with IP effect based on the Pearson correlation constraints.This method uses the Pearson correlation coeffi cient in statistics to characterize the correlation between the resistivity and the chargeability and constructs the Pearson correlation constraints for inverting the objective function to reduce the non uniqueness of inversion.To verify the eff ectiveness of this method,we perform both Occam’s inversion and Pearson correlation constrained inversion on the synthetic data.The experiments show that the Pearson correlation constrained inverison is more accurate and stable than the Occam’s inversion.Finally,we carried out the inversion to a survey dataset with and without IP eff ect.The results show that the data misfit and the continuity of the inverted section are greatly improved when the IP eff ect is considered.展开更多
Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fo...Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.展开更多
The Magneto-acoustic Tomography with Current Injection (MAT-CI) is a new biological electrical impedance imaging technique that combines Electrical Impedance Tomography (EIT) with Ultrasonic Imaging (UI), which posses...The Magneto-acoustic Tomography with Current Injection (MAT-CI) is a new biological electrical impedance imaging technique that combines Electrical Impedance Tomography (EIT) with Ultrasonic Imaging (UI), which possesses the non-invasive and high-contrast of the EIT and the high-resolution of the UI. The MAT-CI is expected to acquire high quality image and embraces a wide application. Its principle is to put the conductive sample in the Static Magnetic Field(SMF) and inject a time-varying current, during which the SMF and the current interact and generate the Lorentz Force that inspire ultrasonic signal received by the ultrasonic transducers positioned around the sample. And then according to related reconstruction algorithm and ultrasonic signal, electrical conductivity image is obtained. In this paper, a forward problem mathematical model of the MAT-CI has been set up to deduce the theoretical equation of the electromagnetic field and solve the sound source distribution by Green’s function. Secondly, a sound field restoration by Wiener filtering and reconstruction of current density by time-rotating method have deduced the Laplace’s equation that caters to the current density to further acquire the electrical conductivity distribution image of the sample through iteration method. In the end, double-loop coils experiments have been conducted to verify its feasibility.展开更多
Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relat...Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relationship between the conductivity and probe signal of ECT is studied by means of numerical simulation. Finally,the accuracy of inversion result is improved by optimizing the initial conductivity by use of experimental data.展开更多
基金Supported by Key Research and Development Project of Guangxi Pr ovince(No.AB21196028).
文摘Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.
基金sponsored by the National Major Project(No.2016ZX05014-001)the National Natural Science Foundation of China(No.41172130 and U1403191)the Fundamental Research Funds for the Central Universities(No.2-9-2015-209)
文摘Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low- resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source.
基金Supported by the National Natural Science Foundation of China(41904109,41974146)National Science and Technology Major Project(2017ZX05019-005)+2 种基金China Postdoctoral Science Foundation(2018M640663)the Shandong Province Postdoctoral Innovation Projects(sdbh20180025)National Key Laboratory of Electromagnetic Environment Projects(6142403200307)。
文摘Based on the pseudo-analytical equation of electromagnetic log for layered formation,an optimal boundary match method is proposed to adaptively truncate the encountered formation structures.An efficient integral method is put forward to significantly accelerate the convergence of Sommerfeld integral.By asymptotically approximating and subtracting the first reflection/transmission waves from the scattered field,the new Sommerfeld integral method has addressed difficulties encountered by the traditional digital filtering method,such as low computational precision and limited operating range,and realized the acceleration of the computation speed of logging-while-drilling electromagnetic measurements(LWD EM).By making use of the priori information from the offset/pilot wells and interactively adjusting the formation model,the optimum initial guesses of the inversion model is determined in order to predict the nearby formation boundaries.The gradient optimization algorithm is developed and an interactive inversion system for the LWD EM data from the horizontal wells is established.The inverted results of field data demonstrated that the real-time interactive inversion method is capable of providing the accurate boundaries of layers around the wellbore from the LWD EM,and it will benefit the wellbore trajectory optimization and reservoir interpretation.
基金Support by Project of Geophysical Comprehensive Survey and Information Extraction of Deep Mineral Resources(2016YFC0600505)
文摘With the development of gravity gradient full tensor measurement technique,three-dimensional( 3D) inversion based on gravity gradient tensor can provide more accurate information. But the forward calculation of 3D full tensor sensitivity matrix is very time-consuming,which restricts its development and application.According to the symmetry of the kernel function,the authors reconstruct the underground source of geological body to avoid repeat computation of the same value,and work out the corresponding relationship between the response of geological body to the observation point and the response of reconstructed geological body to the observation point. According to the relationship,rapid calculation of full tensor gravity sensitivity matrix can be achieved. The model calculation shows that this method can increase the speed of 30-45 times compared with the traditional calculation method. The sensitivity matrix is applied to the multi-component inversion of gravity gradient. The application of this method on the measured data provides the basis for the promotion of the method.
基金Projects(41074085,41374118)supported by the National Natural Science Foundation of ChinaProject(20120162110015)supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-12-0551)supported by Program for New Century Excellent Talents in University,China
文摘The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.
基金supported by the Joint Fund of Seismological Science(Grant No.U1839206)the National R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(Grant No.2017YFC1500301)+2 种基金supported by IGGCAS Research Start-up Funds(Grant No.E0515402)National Natural Science Foundation of China(Grant No.E1115401)supported by National Natural Science Foundation of China(Grant No.11971258).
文摘The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.
基金The research is supported by internal funding from SINTEF through a strategic project focusing on Machine Learning and Digitalization in the infrastructure sector.
文摘Neural networks with physical governing equations as constraints have recently created a new trend in machine learning research.In this context,a review of related research is first presented and discussed.The potential offered by such physics-informed deep learning models for computations in geomechanics is demonstrated by application to one-dimensional(1D)consolidation.The governing equation for 1D problems is applied as a constraint in the deep learning model.The deep learning model relies on automatic differentiation for applying the governing equation as a constraint,based on the mathematical approximations established by the neural network.The total loss is measured as a combination of the training loss(based on analytical and model predicted solutions)and the constraint loss(a requirement to satisfy the governing equation).Two classes of problems are considered:forward and inverse problems.The forward problems demonstrate the performance of a physically constrained neural network model in predicting solutions for 1D consolidation problems.Inverse problems show prediction of the coefficient of consolidation.Terzaghi’s problem,with varying boundary conditions,is used as a numerical example and the deep learning model shows a remarkable performance in both the forward and inverse problems.While the application demonstrated here is a simple 1D consolidation problem,such a deep learning model integrated with a physical law has significant implications for use in,such as,faster realtime numerical prediction for digital twins,numerical model reproducibility and constitutive model parameter optimization.
基金This paper was fi nancially supported by the National Natural Science Foundation of China(Nos.42030806,41774125,41904104,41804098)the Pioneer Project of Chinese Academy of Sciences(No.XDA14020102).
文摘Due to the induced polarization(IP)eff ect,the sign reversal often occurs in timedomain airborne electromagnetic(AEM)data.The inversions that do not consider IP eff ect cannot recover the true umderground electrical structures.In view of the fact that there are many parameters of airborne induced polarization data in time domain,and the sensitivity diff erence between parameters is large,which brings challenges to the stability and accuracy of the inversion.In this paper,we propose an inversion mehtod for time-domain AEM data with IP effect based on the Pearson correlation constraints.This method uses the Pearson correlation coeffi cient in statistics to characterize the correlation between the resistivity and the chargeability and constructs the Pearson correlation constraints for inverting the objective function to reduce the non uniqueness of inversion.To verify the eff ectiveness of this method,we perform both Occam’s inversion and Pearson correlation constrained inversion on the synthetic data.The experiments show that the Pearson correlation constrained inverison is more accurate and stable than the Occam’s inversion.Finally,we carried out the inversion to a survey dataset with and without IP eff ect.The results show that the data misfit and the continuity of the inverted section are greatly improved when the IP eff ect is considered.
基金the National Key Research and Development Program of China(No.2016YFC060110403).
文摘Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.
文摘The Magneto-acoustic Tomography with Current Injection (MAT-CI) is a new biological electrical impedance imaging technique that combines Electrical Impedance Tomography (EIT) with Ultrasonic Imaging (UI), which possesses the non-invasive and high-contrast of the EIT and the high-resolution of the UI. The MAT-CI is expected to acquire high quality image and embraces a wide application. Its principle is to put the conductive sample in the Static Magnetic Field(SMF) and inject a time-varying current, during which the SMF and the current interact and generate the Lorentz Force that inspire ultrasonic signal received by the ultrasonic transducers positioned around the sample. And then according to related reconstruction algorithm and ultrasonic signal, electrical conductivity image is obtained. In this paper, a forward problem mathematical model of the MAT-CI has been set up to deduce the theoretical equation of the electromagnetic field and solve the sound source distribution by Green’s function. Secondly, a sound field restoration by Wiener filtering and reconstruction of current density by time-rotating method have deduced the Laplace’s equation that caters to the current density to further acquire the electrical conductivity distribution image of the sample through iteration method. In the end, double-loop coils experiments have been conducted to verify its feasibility.
基金supported by the research fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(No. MCMS-I-0518K01&MCMSI-0519G02)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Natural Science Funding (No. 51875277)
文摘Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relationship between the conductivity and probe signal of ECT is studied by means of numerical simulation. Finally,the accuracy of inversion result is improved by optimizing the initial conductivity by use of experimental data.