Nanomaterials are one of the research and development hotspots in the field of cutting-edge new materials,and also an important strategic emerging industry.Magnetic nanomaterials have broad application prospects in fi...Nanomaterials are one of the research and development hotspots in the field of cutting-edge new materials,and also an important strategic emerging industry.Magnetic nanomaterials have broad application prospects in fields such as chemical engineering,new materials,electronic information,and biomedicine.This article introduces the application progress and preparation methods of magnetic nanomaterials,and puts forward suggestions for further optimizing the preparation process of magnetic nanomaterials and developing new magnetic materials with better performance.展开更多
One-dimensional carbon nano-materials (ODCNMs) synthesized from ethanol flames exhibit various agglomerated morphologies, such as "chrysanthemum-like", "hairball-like" or "orange-peel-like", "vertically alig...One-dimensional carbon nano-materials (ODCNMs) synthesized from ethanol flames exhibit various agglomerated morphologies, such as "chrysanthemum-like", "hairball-like" or "orange-peel-like", "vertically aligned" and "wrinkling-pileup". The present work studied the agglomerating process and the growth mechanism by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is thought that the size and distribution of the catalyst particles produced from pretreatment of the substrates play a key role during the formation of agglomerations. It is expected that the steady growth of ODCNMs in flames will be improved through the preparation of the catalysts.展开更多
Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-d...Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.展开更多
Partial hepatectomy(PH)can lead to severe complications,including liver failure,due to the low regenerative capacity of the remaining liver,especially after extensive hepatectomy.Liver sinusoidal endothelial cells(LSE...Partial hepatectomy(PH)can lead to severe complications,including liver failure,due to the low regenerative capacity of the remaining liver,especially after extensive hepatectomy.Liver sinusoidal endothelial cells(LSECs),whose proliferation occurs more slowly and later than hepatocytes after PH,compose the lining of the hepatic sinusoids,which are the smallest blood vessels in the liver.Vascular endothelial growth factor(VEGF),secreted by hepatocytes,promotes LSEC proliferation.Supplementation of exogenous VEGF after hepatectomy also increases the number of LSECs in the remaining liver,thus promoting the reestablishment of the hepatic sinusoids and accelerating liver regeneration.At present,some shortcomings exist in the methods of supplementing exogenous VEGF,such as a low drug concentration in the liver and the reaching of other organs.Moreover,VEGF should be administered multiple times and in large doses because of its short half-life.This review summarized the most recent findings on liver regeneration and new strategies for the localized delivery VEGF in the liver.展开更多
Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing...Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities.展开更多
A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylen...A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylene glycol methyl ether(PM)solution for chain extension reaction.A hydrophilic andflexible polyether seg-ment was introduced into the hardener molecule.The effects of TETA/DGEPG,reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether(DGEPG)were studied.In addition,several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct(without catalyst and with bisphenol A diglycidyl ether epoxy resin)were compared.It was found that the higher the molecular weight of triethylenetetramine,the longer the chain segment of the surface active molecule.When the equivalence ratio of amine hydrogen and epoxy group is low,the stability of lotion is good.When the ratio of amine hydrogen to epoxy group is large,the content of triethylenetetramine is small.The main objective of this study is the provision of new data and knowledge for the development of new materials in the coating and electronic industry.展开更多
Grain crushing plays an important role in one-dimensional (1D) compression and creep behaviors of granular materials under high stress. It is clear that the macro-properties of granular materials are closely related t...Grain crushing plays an important role in one-dimensional (1D) compression and creep behaviors of granular materials under high stress. It is clear that the macro-properties of granular materials are closely related to the micro-fracture properties of grains in 1D compression and creep tests. In this paper, a series of 1D compression and creep tests were performed on Ottawa sand to investigate the deformation and grain crushing properties of granular materials, and it shows that the void ratio is correlated to the grain crushing amount (the quantity of crushed grains) for granular materials subjected to grain crushing. The test results, combining with the existing test data related to grain crushing of granular materials, were used to verify the relation. Moreover, the implications of these relations on the yield of granular material, and the equivalent effect of stress and time in changing soil fabric are presented.展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedica...The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedical area and materials science, such as catalysis, separation, surface modification, and therapeutics areas. A general review on the polymerization of lipids and surfactant self assemblies to amphiphilic self assemblies is given in this paper with 49 references. The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized. The polymerization of polymerizable surfactants(surfmers) in emulsion and liquid crystalline phases are also discussed. The potential application of new nano porous materials is briefly described.展开更多
The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow mo...The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow model.The formulation of the flow model is based on basic universal equations of conservation of momentum,energy and mass.The prescribed flow model is converted to non-dimensional form by using suitable scaling.The obtained transformed equations are solved numerically by using finite difference scheme.For the analysis of above said behavior the computed numerical data for fluid velocity,temperature profile,and mass concentration for several constraints that is mixed convection parameterλt,modified mixed convection parameterλc,Prandtl number Pr,heat generation/absorption parameterδ,Schmidt number Sc,thermophoresis parameter Nt,and thermophoretic coefficient k are sketched in graphical form.Numerical results for skin friction,heat transfer rate and the mass transfer rate are tabulated for various emerging physical parameters.It is reported that in enhancement in heat,generation boosts up the fluid temperature at some positions of the surface of the sphere.As heat absorption parameter is decreased temperature field increases at position X=π/4 on the other hand,no alteration at other considered circumferential positions is noticed.展开更多
The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex...The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex- plore efficient and sustainable approaches for the carbon-neutral pathway of CO2 utilization and recycling. In our recent works with this context, we developed successfully a novel "chemical vapor deposition integrated process (CVD-IP)" technology to converting robustly CO2 into the value-added solid-form carbon materials, The monometallic FeNi0-Al2O3 (FNi0) and bimetallic FeNix-Al2O3 (FNi2, FNi4, FNi8 and FNi20) samples were synthesized and effective for this new approach. The catalyst labeled FNi8 gave the better performance, exhibited the single pass solid carbon yield of 30%. These results illustrated alternative promising cases for the CO2 capture utilization storage (CCUS), by means of the CO2 catalytic conversion into the solid-form nano carbon materials.展开更多
Morphology controlled synthesis of nanoparticles of powerful high energetic compounds(HECs) such as l,3,5-trinitro-l,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-l,3,5,7-tetrazocane(HMX) were achieved by a simple solven...Morphology controlled synthesis of nanoparticles of powerful high energetic compounds(HECs) such as l,3,5-trinitro-l,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-l,3,5,7-tetrazocane(HMX) were achieved by a simple solvent—antisolvent interaction(SAI) method at 70 ℃.The effects of different solvents on particle size and morphology of the prepared nano-HECs were studied systematically.Particle size and morphology of the nano-HECs was characterized using field emission scanning electron microscopy(FE-SEM) imaging.X-ray diffraction(XRD) and Fourier transform infrared(FTIR) spectroscopy studies revealed that RDX and HMX were precipitated in their most stable polymorphic forms,i.e.a and P,respectively.Thermogravimetric analysis coupled with differential scanning calorimetry(TGA-DSC) studies showed that the thermal response of the nanoparticles was similar to the respective raw-HECs.HEC nanoparticles with spherical and rod shaped morphology were observed under different solvent conditions.The mean particle size also varied considerably with the use of different solvents.展开更多
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development...The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.展开更多
Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indica...Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.展开更多
A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidificatio...A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.展开更多
This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy...This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given.展开更多
In this study,nano-polyanline and manganese oxide nanometer tubular composites(nano-PANI@MnO2)were prepared by a surface initiated polymerization method and used as electrochemical capacitor electrode materials; and...In this study,nano-polyanline and manganese oxide nanometer tubular composites(nano-PANI@MnO2)were prepared by a surface initiated polymerization method and used as electrochemical capacitor electrode materials; and the effect of aniline amount on the microstructure and electrochemical performance was investigated. The microstructures and surface morphologies of nano-PANI@MnO2 were characterized by X-ray diffraction,scanning electron microscopy and fourier transformation infrared spectroscope. The electrochemical performance of these composite materials was performed with cyclic voltammetry,charge–discharge test and electrochemical impedance spectroscopy,respectively. The results demonstrate that the feed ratio of aniline to MnO2 played a very important role in constructing the hierarchically nano-structure,which would,hence,determine the electrochemical performance of the materials. Using the templateassisted strategy and controlling the feed ratio of aniline to MnO2,the nanometer tubular structure of nanoPANI@MnO2 was obtained. A maximum specific capacitance of 386 F/g was achieved in aqueous 1 mol/L Na NO3 electrolyte with the potential range from 0 to 0.6 V(vs. SCE).展开更多
An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-tr...An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-treated with aluminum diethylene glycol dinitrate coupling agent before adding to the HDPE. Analyses of the reinforced HDPE nano-composite show significant improvement in its mechanical properties including, tensile strength (>26 MPa), break elongation (<1.1%), flexural strength (>22 MPa), and friction coefficients<0.11. The results demonstrate that, after surface-treated, talc can be used as a promising filling material and a reinforcing agent in making HDPE nano-composite.展开更多
We have developed a computerized system for measuring field electron emission (FE) and field ionization (FI), which has a three-electrode configuration with emitters biased up to 25 kV, and is programmed by the La...We have developed a computerized system for measuring field electron emission (FE) and field ionization (FI), which has a three-electrode configuration with emitters biased up to 25 kV, and is programmed by the Labview software. The current-voltage curves of nano-tip tungsten and carbon nanotube (CNT) arrays were measured. The electron emission of CNTs proceeded with a turn-on field of 1.24 V/μm and a threshold field of 1.85 V/μm. Compared to the field emission, field ionization turned on at 3.5 V/μm. Raman spectroscopy and scanning electron microscopy (SEM) measurements showed degradation of the CNTs after FE/FI testing. The measurement of a W-tip revealed strong electron emission and instability behavior at a field strength higher than 7.0 V/μm.展开更多
文摘Nanomaterials are one of the research and development hotspots in the field of cutting-edge new materials,and also an important strategic emerging industry.Magnetic nanomaterials have broad application prospects in fields such as chemical engineering,new materials,electronic information,and biomedicine.This article introduces the application progress and preparation methods of magnetic nanomaterials,and puts forward suggestions for further optimizing the preparation process of magnetic nanomaterials and developing new magnetic materials with better performance.
基金Supported by the Scientific Research Foundationfor the Returned Overseas Chinese Scholars of Chinese Ministry Edu-cation (200233)
文摘One-dimensional carbon nano-materials (ODCNMs) synthesized from ethanol flames exhibit various agglomerated morphologies, such as "chrysanthemum-like", "hairball-like" or "orange-peel-like", "vertically aligned" and "wrinkling-pileup". The present work studied the agglomerating process and the growth mechanism by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is thought that the size and distribution of the catalyst particles produced from pretreatment of the substrates play a key role during the formation of agglomerations. It is expected that the steady growth of ODCNMs in flames will be improved through the preparation of the catalysts.
基金supported by the Hunan Science Fund for Distinguished Young Scholars (2023JJ10069)the National Natural Science Foundation of China (52172169)。
文摘Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.
基金the Natural Science Foundation of Zhejiang Province,No.LQ21H030005
文摘Partial hepatectomy(PH)can lead to severe complications,including liver failure,due to the low regenerative capacity of the remaining liver,especially after extensive hepatectomy.Liver sinusoidal endothelial cells(LSECs),whose proliferation occurs more slowly and later than hepatocytes after PH,compose the lining of the hepatic sinusoids,which are the smallest blood vessels in the liver.Vascular endothelial growth factor(VEGF),secreted by hepatocytes,promotes LSEC proliferation.Supplementation of exogenous VEGF after hepatectomy also increases the number of LSECs in the remaining liver,thus promoting the reestablishment of the hepatic sinusoids and accelerating liver regeneration.At present,some shortcomings exist in the methods of supplementing exogenous VEGF,such as a low drug concentration in the liver and the reaching of other organs.Moreover,VEGF should be administered multiple times and in large doses because of its short half-life.This review summarized the most recent findings on liver regeneration and new strategies for the localized delivery VEGF in the liver.
基金We are thankful for the Project Supported by the Zhejiang Provincial Natural Science Foundation of China(GB21031200070)National Natural Science Foundation of China(C125020173)for the support to this research.
文摘Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities.
基金This work is financially supported by a University-Level Doctoral Research Start-Up Fund in 2019.
文摘A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylene glycol methyl ether(PM)solution for chain extension reaction.A hydrophilic andflexible polyether seg-ment was introduced into the hardener molecule.The effects of TETA/DGEPG,reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether(DGEPG)were studied.In addition,several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct(without catalyst and with bisphenol A diglycidyl ether epoxy resin)were compared.It was found that the higher the molecular weight of triethylenetetramine,the longer the chain segment of the surface active molecule.When the equivalence ratio of amine hydrogen and epoxy group is low,the stability of lotion is good.When the ratio of amine hydrogen to epoxy group is large,the content of triethylenetetramine is small.The main objective of this study is the provision of new data and knowledge for the development of new materials in the coating and electronic industry.
基金Supported by Natural Sciences and Engineering Research Council of Canada, Alberta Energy Research Institute and the Department of Civil Engineering at University of Calgary
文摘Grain crushing plays an important role in one-dimensional (1D) compression and creep behaviors of granular materials under high stress. It is clear that the macro-properties of granular materials are closely related to the micro-fracture properties of grains in 1D compression and creep tests. In this paper, a series of 1D compression and creep tests were performed on Ottawa sand to investigate the deformation and grain crushing properties of granular materials, and it shows that the void ratio is correlated to the grain crushing amount (the quantity of crushed grains) for granular materials subjected to grain crushing. The test results, combining with the existing test data related to grain crushing of granular materials, were used to verify the relation. Moreover, the implications of these relations on the yield of granular material, and the equivalent effect of stress and time in changing soil fabric are presented.
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金Supported by National Natural Science Foundation(No.0 5 1730 0 3) Beijing Science and Technology New Star Program(No.H0 10 4 10 0 10 112 ) and Im portant Natural Science Foundation of Beijing(No.2 0 310 0 1) .
文摘The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedical area and materials science, such as catalysis, separation, surface modification, and therapeutics areas. A general review on the polymerization of lipids and surfactant self assemblies to amphiphilic self assemblies is given in this paper with 49 references. The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized. The polymerization of polymerizable surfactants(surfmers) in emulsion and liquid crystalline phases are also discussed. The potential application of new nano porous materials is briefly described.
基金The authors would like to acknowledge Natural Science Foundation of China(Grant Nos.61673169,11701176,11626101,11601485).
文摘The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow model.The formulation of the flow model is based on basic universal equations of conservation of momentum,energy and mass.The prescribed flow model is converted to non-dimensional form by using suitable scaling.The obtained transformed equations are solved numerically by using finite difference scheme.For the analysis of above said behavior the computed numerical data for fluid velocity,temperature profile,and mass concentration for several constraints that is mixed convection parameterλt,modified mixed convection parameterλc,Prandtl number Pr,heat generation/absorption parameterδ,Schmidt number Sc,thermophoresis parameter Nt,and thermophoretic coefficient k are sketched in graphical form.Numerical results for skin friction,heat transfer rate and the mass transfer rate are tabulated for various emerging physical parameters.It is reported that in enhancement in heat,generation boosts up the fluid temperature at some positions of the surface of the sphere.As heat absorption parameter is decreased temperature field increases at position X=π/4 on the other hand,no alteration at other considered circumferential positions is noticed.
基金support for this project from the National Natural Science Foundation of China (21476145)the National 973 Program of Ministry of Sciences and Technologies of China (2011CB201202)
文摘The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex- plore efficient and sustainable approaches for the carbon-neutral pathway of CO2 utilization and recycling. In our recent works with this context, we developed successfully a novel "chemical vapor deposition integrated process (CVD-IP)" technology to converting robustly CO2 into the value-added solid-form carbon materials, The monometallic FeNi0-Al2O3 (FNi0) and bimetallic FeNix-Al2O3 (FNi2, FNi4, FNi8 and FNi20) samples were synthesized and effective for this new approach. The catalyst labeled FNi8 gave the better performance, exhibited the single pass solid carbon yield of 30%. These results illustrated alternative promising cases for the CO2 capture utilization storage (CCUS), by means of the CO2 catalytic conversion into the solid-form nano carbon materials.
基金Financial assistance from ARMREB(DRDO) under grant No.ARMREB/CDSW/2012/149
文摘Morphology controlled synthesis of nanoparticles of powerful high energetic compounds(HECs) such as l,3,5-trinitro-l,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-l,3,5,7-tetrazocane(HMX) were achieved by a simple solvent—antisolvent interaction(SAI) method at 70 ℃.The effects of different solvents on particle size and morphology of the prepared nano-HECs were studied systematically.Particle size and morphology of the nano-HECs was characterized using field emission scanning electron microscopy(FE-SEM) imaging.X-ray diffraction(XRD) and Fourier transform infrared(FTIR) spectroscopy studies revealed that RDX and HMX were precipitated in their most stable polymorphic forms,i.e.a and P,respectively.Thermogravimetric analysis coupled with differential scanning calorimetry(TGA-DSC) studies showed that the thermal response of the nanoparticles was similar to the respective raw-HECs.HEC nanoparticles with spherical and rod shaped morphology were observed under different solvent conditions.The mean particle size also varied considerably with the use of different solvents.
基金Sponsored by National Natural Science Foundation of China (21231002,21276026,21271023,21173021,91022006,11202193,11172276,and 11072225)the 111 Project ( B07012)+1 种基金the Program of Cooperation of the Beijing Education Commission ( 20091739006)Specialized Research Fund for the Doctoral Program of Higher Education ( 20101101110031)
文摘The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.
基金supported by 973(2011CB935900,2010CB631303)NSFC(21231005,51071087)+4 种基金111 Project(B12015)MOE(IRT13R30)the Research Fund for the Doctoral Program of Higher Education of China(20120031110001)Tianjin Sci&Tech Project(10SYSYJC27600)the Nature Science Foundation of Tianjin(11JCYBJC07700)
文摘Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.
基金financially supported by the Fundamental Research Funds for the National Natural Science Foundation of China(Nos.21071107,21277094,and21103119)Production and Research Collaborative Innovation Project of Jiangsu Province(No.BY2012123)+9 种基金Natural Science Foundation of Jiangsu Province(No.BK2012167)Scienceand Technology Pillar Program(Industry)of Jiangsu Province(No.BE2012101)Collegiate Natural Science Fund of Jiangsu Province(Nos.12KJA430005,09KJB30003,and11KJB430012)Key Laboratory for Environment Functional Materials of Suzhou(No.SZS201008)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Applied Basic Research Project of Suzhou(No.SYG201242)Industrial Surport Project of Suzhou(No.SG201138)Jiangsu Key Laboratory of Material Tribology(No.Kjsmcx2011001)Jiangsu Key Laboratory for Photon Manufacturing(No.GZ201111)Jiangsu Provincial Key Laboratory for Interventional Medical Devices(No.Jr1210)Creative Project of Postgraduate of Jiangsu Province(No.CXZZ11_0954)
文摘A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.
文摘This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given.
基金supported by the National Natural Science Foundation of China (51203071,51363014 and 51362018)China Postdoctoral Science Foundation (2014M552509)+2 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (sklpme2014-4-25)the Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology (J201402)the University Scientific Research Project of Gansu Province (2014B-025)
文摘In this study,nano-polyanline and manganese oxide nanometer tubular composites(nano-PANI@MnO2)were prepared by a surface initiated polymerization method and used as electrochemical capacitor electrode materials; and the effect of aniline amount on the microstructure and electrochemical performance was investigated. The microstructures and surface morphologies of nano-PANI@MnO2 were characterized by X-ray diffraction,scanning electron microscopy and fourier transformation infrared spectroscope. The electrochemical performance of these composite materials was performed with cyclic voltammetry,charge–discharge test and electrochemical impedance spectroscopy,respectively. The results demonstrate that the feed ratio of aniline to MnO2 played a very important role in constructing the hierarchically nano-structure,which would,hence,determine the electrochemical performance of the materials. Using the templateassisted strategy and controlling the feed ratio of aniline to MnO2,the nanometer tubular structure of nanoPANI@MnO2 was obtained. A maximum specific capacitance of 386 F/g was achieved in aqueous 1 mol/L Na NO3 electrolyte with the potential range from 0 to 0.6 V(vs. SCE).
文摘An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-treated with aluminum diethylene glycol dinitrate coupling agent before adding to the HDPE. Analyses of the reinforced HDPE nano-composite show significant improvement in its mechanical properties including, tensile strength (>26 MPa), break elongation (<1.1%), flexural strength (>22 MPa), and friction coefficients<0.11. The results demonstrate that, after surface-treated, talc can be used as a promising filling material and a reinforcing agent in making HDPE nano-composite.
基金supported by National Natural Science Foundation(No.11075121)the International Science and Technology Cooperation Program(No.2010DFA02010)Three Gorges University of China(KJ2009B011)
文摘We have developed a computerized system for measuring field electron emission (FE) and field ionization (FI), which has a three-electrode configuration with emitters biased up to 25 kV, and is programmed by the Labview software. The current-voltage curves of nano-tip tungsten and carbon nanotube (CNT) arrays were measured. The electron emission of CNTs proceeded with a turn-on field of 1.24 V/μm and a threshold field of 1.85 V/μm. Compared to the field emission, field ionization turned on at 3.5 V/μm. Raman spectroscopy and scanning electron microscopy (SEM) measurements showed degradation of the CNTs after FE/FI testing. The measurement of a W-tip revealed strong electron emission and instability behavior at a field strength higher than 7.0 V/μm.