期刊文献+
共找到5,498篇文章
< 1 2 250 >
每页显示 20 50 100
Morphology-Controlled Growth of A1N One-Dimensional Nanostructures 被引量:1
1
作者 Ting XIE Min YE +5 位作者 Xiaosheng FANG Zhi JIANG Li CHEN Mingguang KONG Yucheng WU Lide ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第4期608-614,共7页
Aluminum nitride (AIN) nanowires, serrated nanoribbons, and nanoribbons were selectively obtained through a simple chloride assisted chemical vapor deposition process. The morphologies of the products could be contr... Aluminum nitride (AIN) nanowires, serrated nanoribbons, and nanoribbons were selectively obtained through a simple chloride assisted chemical vapor deposition process. The morphologies of the products could be controlled by adjusting the deposition position and the flux of the reactant gas. The morphologies and structures of the AIN products were investigated in detail. The formation mechanism of the as-prepared different morphologies of AIN one-dimensional (ID) nanostructures was discussed on the basis of the experimental results. 展开更多
关键词 Aluminum nitride Morphology-controlled growth one-dimensional nanostructure
下载PDF
Spectroscopy and carrier dynamics of one-dimensional nanostructures
2
作者 Yutong Zhang Zhuoya Zhu +3 位作者 Shuai Zhang Xianxin Wu Wenna Du Xinfeng Liu 《Journal of Semiconductors》 EI CAS CSCD 2022年第12期12-21,共10页
In recent years,one-dimensional(1D)nanomaterials have raised researcher's interest because of their unique structur-al characteristic to generate and confine the optical signal and their promising prospects in pho... In recent years,one-dimensional(1D)nanomaterials have raised researcher's interest because of their unique structur-al characteristic to generate and confine the optical signal and their promising prospects in photonic applications.In this re-view,we summarized the recent research advances on the spectroscopy and carrier dynamics of 1D nanostructures.First,the condensation and propagation of exciton-polaritons in nanowires(NWs)are introduced.Second,we discussed the properties of 1D photonic crystal(PC)and applications in photonic-plasmonic structures.Third,the observation of topological edge states in 1D topological structures is introduced.Finally,the perspective on the potential opportunities and remaining chal-lenges of 1D nanomaterials is proposed. 展开更多
关键词 one-dimensional nanostructures carrier dynamics NANOWIRES EXCITON-POLARITONS photonic crystals topological struc-tures
下载PDF
Synthesis, Optical Properties and Photovoltaic Application of the SnS Quasi-one-dimensional Nanostructures 被引量:5
3
作者 M.X.Wang G.H.Yue +3 位作者 Y.D.Lin X.Wen D.L.Peng Z.R.Geng 《Nano-Micro Letters》 SCIE EI CAS 2013年第1期1-6,共6页
Low-toxicity single crystal Sn S nanowires had been successfully synthesized by the catalystassistant chemical vapor deposition. Au nanoparticles were applied on the ITO surface as the catalysis, using Sn S powder and... Low-toxicity single crystal Sn S nanowires had been successfully synthesized by the catalystassistant chemical vapor deposition. Au nanoparticles were applied on the ITO surface as the catalysis, using Sn S powder and S powder as forerunners. The structure, morphology and optical properties of the prepared Sn S nanowires were characterized. The experimental results show the as-synthesized nanowires are single crystalline with a preferential orientation. The synthesized Sn S nanowires show strong absorption in the visible and nearinfrared spectral region, and the direct energy band gap of Sn S nanowires is 1.46 e V. 展开更多
关键词 nanostructure Chemical vapor deposition Crystal growth Optical property
下载PDF
Recent advances in one-dimensional nanostructures for energy electrocatalysis 被引量:4
4
作者 Ping Li Wei Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第1期4-22,共19页
Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highligh... Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highlights the application of one‐dimensional(1D)metal electrocatalysts in energy conversion,focusing on two important reaction systems-direct methanol fuel cells and water splitting.In this review,we first give a broad introduction of electrochemical energy conversion.In the second section,we summarize the recent significant advances in the area of 1D metal nanostructured electrocatalysts for the electrochemical reactions involved in fuel cells and water splitting systems,including the oxygen reduction reaction,methanol oxidation reaction,hydrogen evolution reaction,and oxygen evolution reaction.Finally,based on the current studies on 1D nanostructures for energy electrocatalysis,we present a brief outlook on the research trend in 1D nanoelectrocatalysts for the two clean electrochemical energy conversion systems mentioned above. 展开更多
关键词 One‐dimensional nanostructure Fuel cell Water splitting ELECTROCATALYSIS Energy conversion
下载PDF
Recent Advances in Electrode Design Based on One-Dimensional Nanostructure Arrays for Proton Exchange Membrane Fuel Cell Applications 被引量:2
5
作者 Shangfeng Du 《Engineering》 SCIE EI 2021年第1期33-49,共17页
One-dimensional(1D)Pt-based electrocatalysts demonstrate outstanding catalytic activities and stability toward the oxygen reduction reaction(ORR).Advances in three-dimensional(3D)ordered electrodes based on 1D Pt-base... One-dimensional(1D)Pt-based electrocatalysts demonstrate outstanding catalytic activities and stability toward the oxygen reduction reaction(ORR).Advances in three-dimensional(3D)ordered electrodes based on 1D Pt-based nanostructure arrays have revealed great potential for developing highperformance proton exchange membrane fuel cells(PEMFCs),in particular for addressing the mass transfer and durability challenges of Pt/C nanoparticle electrodes.This paper reviews recent progress in the field,with a focus on the 3D ordered electrodes based on self-standing Pt nanowire arrays.Nanostructured thin-film(NSTF)catalysts are discussed along with electrodes made from Pt-based nanoparticles deposited on arrays of polymer nanowires,and carbon and TiO2 nanotubes.Achievements on electrodes from Pt-based nanotube arrays are also reviewed.The importance of size,surface properties,and the distribution control of 1D catalyst nanostructures is indicated.Finally,challenges and future development opportunities are addressed regarding increasing electrochemical surface area(ECSA)and quantifying oxygen mass transport resistance for 1D nanostructure array electrodes. 展开更多
关键词 Proton exchange membrane fuel cell (PEMFC) ELECTRODE one-dimensional(1D) Oxygen reduction reaction(ORR) CATALYST ORDERED
下载PDF
Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
6
作者 相文雨 王亚萍 +3 位作者 纪维霄 侯文杰 李胜世 王培吉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期429-435,共7页
Searching for one-dimensional(1D)nanostructure with ferromagnetic(FM)half-metallicity is of significance for the development of miniature spintronic devices.Here,based on the first-principles calculations,we propose t... Searching for one-dimensional(1D)nanostructure with ferromagnetic(FM)half-metallicity is of significance for the development of miniature spintronic devices.Here,based on the first-principles calculations,we propose that the 1D CrN nanostructure is a FM half-metal,which can generate the fully spin-polarized current.The ab initio molecular dynamic simulation and the phonon spectrum calculation demonstrate that the 1D CrN nanostructure is thermodynamically stable.The partially occupied Cr-d orbitals endow the nanostructure with FM half-metallicity,in which the half-metallic gap(?s)reaches up to 1.58 eV.The ferromagnetism in the nanostructure is attributed to the superexchange interaction between the magnetic Cr atoms,and a sizable magnetocrystalline anisotropy energy(MAE)is obtained.Moreover,the transverse stretching of nanostructure can effectively modulate?s and MAE,accompanied by the preservation of half-metallicity.A nanocable is designed by encapsulating the CrN nanostructure with a BN nanotube,and the intriguing magnetic and electronic properties of the nanostructure are retained.These novel characteristics render the 1D CrN nanostructure as a compelling candidate for exploiting high-performance spintronic devices. 展开更多
关键词 HALF-METAL FERROMAGNETISM one-dimensional nanostructure first-principles calculations
下载PDF
Toward high-efficiency perovskite solar cells with one-dimensional oriented nanostructured electron transport materials 被引量:1
7
作者 Yinhua Lv Bing Cai +3 位作者 Ruihan Yuan Yihui Wu Quinn Qiao Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期66-87,I0003,共23页
The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs)... The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level. 展开更多
关键词 1D nanostructures Perovskite solar cells Electron transport materials Electrostatic field High-efficiency
下载PDF
Ambient-Condition Strategy for Production of Hollow Ga_(2)O_(3)@rGO Crystalline Nanostructures Toward Efficient Lithium Storage 被引量:1
8
作者 Dongdong Zhang Qiliang Wei +7 位作者 Haili Huang Lan Jiang Jie Teng Ruizhi Yu Qing Zhang Shengxing Liu Lin Wang Weiyou Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期75-82,共8页
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe... Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications. 展开更多
关键词 ambient condition core-shell nanostructures Ga_(2)O_(3) Li-ion batteries rGO
下载PDF
Calculation and prediction of divertor detachment via impurity seeding by using one-dimensional model
9
作者 周文杰 刘晓菊 +5 位作者 邬潇河 李邦 石奇奇 樊皓尘 杨艳杰 李国强 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期370-379,共10页
Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ... Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning. 展开更多
关键词 divertor detachment impurity seeding one-dimensional modeling
下载PDF
Mass-Based Environmental Factor and Energy Assessment of Microwave-Assisted Synthesized Transition Metal Nanostructures
10
作者 Victor J. Law 《American Journal of Analytical Chemistry》 CAS 2024年第6期201-218,共18页
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy... This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage. 展开更多
关键词 Microwave-Assisted Synthesis Transition Metals nanostructures Allometry Scaling Power-Law Signature Green Chemistry
下载PDF
Formation of Natural Melanin/TiO_(2) Nanostructure Hybrids with Enhanced Optical,Thermal and Magnetic Properties as a Soft Material
11
作者 Saja Algessair Nawal Madkhali 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期613-620,共8页
The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated ... The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics. 展开更多
关键词 natural melanin/TiO_(2) thermal stability OPTOELECTRONIC nanostructure UV radiation
下载PDF
Numerical Investigations on the Resonance Errors of Multiscale Discontinuous Galerkin Methods for One-Dimensional Stationary Schrödinger Equation
12
作者 Bo Dong Wei Wang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期311-324,共14页
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al... In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers. 展开更多
关键词 Discontinuous Galerkin(DG)method Multiscale method Resonance errors one-dimensional Schrödinger equation
下载PDF
Controlled synthesis of one-dimensional Au-Ag porous nanostructures 被引量:2
13
作者 杨立山 谷小虎 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1807-1812,共6页
The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters we... The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications. 展开更多
关键词 one-dimension Ag alloy thermal diffusion DEALLOYING porous nanostructure NANOTUBE
下载PDF
One-Dimensional (1D) ZnS Nanomaterials and Nanostructures 被引量:3
14
作者 Xiaosheng FANG Lide ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期721-736,I0001-I0002,共18页
One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale elect... One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale electric and optoelectronic devices. Zinc sulfide (ZnS) is an important semiconductor compound of Ⅱ-Ⅵ group, and the synthesis of 1D ZnS nanomaterials and nanostructures has been of growing interest owing to their promising application in nanoscale optoelectronic devices. This paper reviews the recent progress on 1D ZnS nanomaterials and nanostructures, including nanowires, nanowire arrays, nanorods, nanobelts or nanoribbons, nanocables, and hierarchical nanostructures etc. This article begins with a survey of various methods that have been developed for generating 1D nanomaterials and nanostructures, and then mainly focuses on structures, synthesis, characterization, formation mechanisms and optical property tuning, and luminescence mechanisms of 1D ZnS nanomaterials and nanostructures. Finally, this review concludes with personal views towards future research on 1D ZnS nanomaterials and nanostructures. 展开更多
关键词 one-dimensional ZNS NANOMATERIALS nanostructureS
下载PDF
Solution-phase Synthesis of One-dimensional Semiconductor Nanostructures 被引量:1
15
作者 Jianfeng YE Limin QI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第4期529-540,共12页
The synthesis of one-dimensional (1D) semiconductor nanostructures has been studied intensively for a wide range of materials due to their unique structural and physical properties and promising potential for future... The synthesis of one-dimensional (1D) semiconductor nanostructures has been studied intensively for a wide range of materials due to their unique structural and physical properties and promising potential for future technological applications. Among various strategies for synthesizing 1D semiconductor nanostructures, solution-phase synthetic routes are advantageous in terms of cost, throughput, modulation of composition, and the potential for large-scale and environmentally benign production. This article gives a concise review on the recent developments in the solution-phase synthesis of ID semiconductor nanostructures of different compositions, sizes, shapes, and architectures. We first introduce several typical solution-phase synthetic routes based on controlled precipitation from homogeneous solutions, including hydrothermal/solvothermal process, solution-liquid-solid (SLS) process, high-temperature organic-solution process, and low-temperature aqueous-solution process. Subsequently, we discuss two solution-phase synthetic strategies involving solid tem- plates or substrates, such as the chemical transformation of 1D sacrificial templates and the oriented growth of 1D nanostructure arrays on solid substrates. Finally, prospects of the solution-phase approaches to 1D semiconductor nanostructures will be briefly discussed. 展开更多
关键词 Solution-phase synthesis one-dimensional nanostructureS SEMICONDUCTOR
下载PDF
An easy way to controllably synthesize one-dimensional Sm B_6 topological insulator nanostructures and exploration of their field emission applications 被引量:2
16
作者 杨汛 甘海波 +6 位作者 田颜 许宁生 邓少芝 陈军 陈焕君 梁世东 刘飞 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期503-509,共7页
A convenient fabrication technique for samarium hexaboride(SmB6) nanostructures(nanowires and nanopencils) is developed, combining magnetron-sputtering and chemical vapor deposition. Both nanostructures are proven... A convenient fabrication technique for samarium hexaboride(SmB6) nanostructures(nanowires and nanopencils) is developed, combining magnetron-sputtering and chemical vapor deposition. Both nanostructures are proven to be single crystals with cubic structure, and they both grow along the [001] direction. Formation of both nanostructures is attributed to the vapor-liquid-solid(VLS) mechanism, and the content of boron vapor is proposed to be the reason for their different morphologies at various evaporation distances. Field emission(FE) measurements show that the maximum current density of both the as-grown nanowires and nanopencils can be several hundred μA/cm^2, and their FN plots deviate only slightly from a straight line. Moreover, we prefer the generalized Schottky-Nordheim(SN) model to comprehend the difference in FE properties between the nanowires and nanopencils. The results reveal that the nonlinearity of FN plots is attributable to the effect of image potential on the FE process, which is almost independent of the morphology of the nanostructures.All the research results suggest that the SmB6 nanostructures would have a more promising future in the FE area if their surface oxide layer was eliminated in advance. 展开更多
关键词 one-dimensional SmB6 nanostructures chemical vapor deposition(CVD) field emission(FE) image potential
下载PDF
Recent Progress in One-dimensional ZnS Nanostructures:Syntheses and Novel Properties 被引量:1
17
作者 Yoshio BANDO Dmitri GOLBERG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第4期512-519,共8页
In this review, the progress made during the last two years with respect to the syntheses and novel properties of one-dimensional (1D) ZnS nanostructures is presented. Primarily the research on 1D ZnS nanostructures... In this review, the progress made during the last two years with respect to the syntheses and novel properties of one-dimensional (1D) ZnS nanostructures is presented. Primarily the research on 1D ZnS nanostructures has been of growing interest owing to their promising applications in nanoscale optoelectronic devices. Diverse 1D ZnS nanostructures with delicately-tuned morphologies, sizes, and microstructures have been synthesized through relatively simple and well-controlled techniques. Some novel properties of the nanomaterials have been explored and the relationships between their structural features and functions have been understood gradually. 展开更多
关键词 SEMICONDUCTORS ZNS Nanomaterlals nanostructureS Filed-emitters
下载PDF
Fabrication,Structures and Properties of Quasi One-dimensional ZnO Toothed-nanostructures 被引量:1
18
作者 黄运华 张跃 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第4期1-4,共4页
Uniform ZnO toothed-nanobelts and nanocombs were fabricated respectively through pure zinc powder evaporation without catalyst at temperature of 600-650℃. Scanning electron microscopy (SEM) and high-resolution tran... Uniform ZnO toothed-nanobelts and nanocombs were fabricated respectively through pure zinc powder evaporation without catalyst at temperature of 600-650℃. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) observations show that such ZnO nanostructures have several types in morphology, and all of them are single crystalline. The experimental results reveal that the growth of the ZnO nanostructures was controlled by vapor-solid mechanism. Room temperature photoluminescence spectra of the toothed-nanobelts show a UV emission at - 390 nm and a broad green emission with 4 subordinate peaks at 455-495 nm. 展开更多
关键词 nanostructureS crystal growth vapor-solid mechanism PHOTOLUMINESCENCE
下载PDF
One-dimensional ZnO nanostructure-based optoelectronic 被引量:3
19
作者 张铮 康卓 +2 位作者 廖庆亮 张晓梅 张跃 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期15-25,共11页
Semiconductor nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have been demonstrated to have potential applications in energy conversion, electronics, optoelectronics, and bios... Semiconductor nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have been demonstrated to have potential applications in energy conversion, electronics, optoelectronics, and biosensing devices. Onedimensional(1D) ZnO nanostructures, with coupled semiconducting and piezoelectric properties, have been extensively investigated and widely used to fabricate nanoscale optoelectronic devices. In this article, we review recent developments in 1D ZnO nanostructure based photodetectors and device performance enhancement by strain engineering piezoelectric polarization and interface modulation. The emphasis is on a fundamental understanding of electrical and optical phenomena, interfacial and contact behaviors, and device characteristics. Finally, the prospects of 1D ZnO nanostructure devices and new challenges are proposed. 展开更多
关键词 one-dimensional ZnO optoelectronics self-powered photodetector strain engineering Van der Waals heterostructure
下载PDF
Optical waveguide behavior of Se-doped and undoped CdS one-dimensional nanostructures using near-field optical microscopy
20
作者 WANG Xiao LIU Dan +3 位作者 PAN Anlian FANG Zheyu HUANG Shan ZHU Xing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2009年第1期26-30,共5页
The optical waveguide behaviors of CdS and CdSxSe1?x nanostructures are studied using near-field optical microscopy. Optical measurements demonstrate that light may be guided on sub-wavelength scales along CdS nanorib... The optical waveguide behaviors of CdS and CdSxSe1?x nanostructures are studied using near-field optical microscopy. Optical measurements demonstrate that light may be guided on sub-wavelength scales along CdS nanoribbons in straight or bent structures. The photoluminescence (PL) spectra from nanoribbon emission using scanning near-field optical microscopy are analyzed under different incident laser intensities. The PL spectra along Se-doped and undoped CdS nanoribbons at different propagation distances are investigated. Both the guided PL spectra of Se-doped and undoped CdS nanoribbons show red-shifts because of the band-edge absorption. Our results are useful for the development of new kinds of functional nano devices. 展开更多
关键词 NEAR-FIELD optical microscopy one-dimensional nanostructure PHOTOLUMINESCENCE CDS
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部