A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
The solution-phase synthesis by chemical transformation from reactive templates has proved to be very effective in morphology-controlled synthesis of inorganic nanostructures. This review paper summarizes the recent p...The solution-phase synthesis by chemical transformation from reactive templates has proved to be very effective in morphology-controlled synthesis of inorganic nanostructures. This review paper summarizes the recent progress in solution-phase synthesis of one-dimensional and hollow inorganic nanostructures via reactive templates, focusing on the approaches developed in our lab. The formation mechanisms based on reactive templates are discussed in depth to show the general concepts for the preparation processes. An outlook on the future development in this area is also presented.展开更多
Since the construction of the Three Gorges Dam, the Poyang Lake hydrological characteristics obviously changed. During the impoundment period of the Three Gorges Reservoir, the hydrodynamic factors of Poyang Lake vari...Since the construction of the Three Gorges Dam, the Poyang Lake hydrological characteristics obviously changed. During the impoundment period of the Three Gorges Reservoir, the hydrodynamic factors of Poyang Lake varied. Water level dropped, the velocity decreased and water exchange time lengthened, which changed the release of phosphorous from sediments. In order to investigate how the hydrodynamic factors influence the release of phosphorous from sediments, we used a two-way annular flume device to simulate the release characteristics of phosphorous from sediments under variable water levels and velocities. We found that both water level rising and velocity increasing could enhance the distur- bance intensity to sediments, which caused the increase of suspended solids (SS) concentration, total phosphorus (TP) concentration in the overlying water, and the ability that phosphorus released to overlying water from sediments enhanced as well: when overlying water velocity maintained 0.3 m/s, SS concentration increased to 4035.85 mg/L at the water level 25 cm which was about 25 times compared to the minimum value and TP concentration in the overlying water also reached the maximum value at the water level 25 cm which was 1.2 times that of the value at 10 cm; when water level maintained 15 cm, SS concentration increased to 4363.35 mg/L at the velocity of 0.5 m/s which was about 28 times compared to the value of 0 m/s, and TP concentration in the overlying water increased from 0.11 mg/L to 0.44 mg/L. When the water level maintained 15 cm, the phosphorous release rate reached the maximum value of 4,86 mg/(md) at 0.4 m/s. The concentration of total dissolved phosphorous (TDP) and soluble reactive phosphate (SRP) both in overlying water and sediment-water interface were negatively correlated with pH. Using the parabolic equation, the optimum water level at a velocity of 0.3 m/s was calculated to be 0.57 cm, and the optimum velocity at water level of 15 cm was found to be 0.2 m/s.展开更多
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20873002, 20673007, 20633010, and 50821061)MOST (Grant No. 2007CB936201)SRFDP (Grant No. 20070001018)
文摘The solution-phase synthesis by chemical transformation from reactive templates has proved to be very effective in morphology-controlled synthesis of inorganic nanostructures. This review paper summarizes the recent progress in solution-phase synthesis of one-dimensional and hollow inorganic nanostructures via reactive templates, focusing on the approaches developed in our lab. The formation mechanisms based on reactive templates are discussed in depth to show the general concepts for the preparation processes. An outlook on the future development in this area is also presented.
基金This work was supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20181310)the National Natural Science Foundation of China(Grant No.52079039).
基金National Key Project for Basic Research,No.2012CB417004
文摘Since the construction of the Three Gorges Dam, the Poyang Lake hydrological characteristics obviously changed. During the impoundment period of the Three Gorges Reservoir, the hydrodynamic factors of Poyang Lake varied. Water level dropped, the velocity decreased and water exchange time lengthened, which changed the release of phosphorous from sediments. In order to investigate how the hydrodynamic factors influence the release of phosphorous from sediments, we used a two-way annular flume device to simulate the release characteristics of phosphorous from sediments under variable water levels and velocities. We found that both water level rising and velocity increasing could enhance the distur- bance intensity to sediments, which caused the increase of suspended solids (SS) concentration, total phosphorus (TP) concentration in the overlying water, and the ability that phosphorus released to overlying water from sediments enhanced as well: when overlying water velocity maintained 0.3 m/s, SS concentration increased to 4035.85 mg/L at the water level 25 cm which was about 25 times compared to the minimum value and TP concentration in the overlying water also reached the maximum value at the water level 25 cm which was 1.2 times that of the value at 10 cm; when water level maintained 15 cm, SS concentration increased to 4363.35 mg/L at the velocity of 0.5 m/s which was about 28 times compared to the value of 0 m/s, and TP concentration in the overlying water increased from 0.11 mg/L to 0.44 mg/L. When the water level maintained 15 cm, the phosphorous release rate reached the maximum value of 4,86 mg/(md) at 0.4 m/s. The concentration of total dissolved phosphorous (TDP) and soluble reactive phosphate (SRP) both in overlying water and sediment-water interface were negatively correlated with pH. Using the parabolic equation, the optimum water level at a velocity of 0.3 m/s was calculated to be 0.57 cm, and the optimum velocity at water level of 15 cm was found to be 0.2 m/s.