Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policy...Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.展开更多
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly...Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.展开更多
The traffic within data centers exhibits bursts and unpredictable patterns.This rapid growth in network traffic has two consequences:it surpasses the inherent capacity of the network’s link bandwidth and creates an i...The traffic within data centers exhibits bursts and unpredictable patterns.This rapid growth in network traffic has two consequences:it surpasses the inherent capacity of the network’s link bandwidth and creates an imbalanced network load.Consequently,persistent overload situations eventually result in network congestion.The Software Defined Network(SDN)technology is employed in data centers as a network architecture to enhance performance.This paper introduces an adaptive congestion control strategy,named DA-DCTCP,for SDN-based Data Centers.It incorporates Explicit Congestion Notification(ECN)and Round-Trip Time(RTT)to establish congestion awareness and an ECN marking model.To mitigate incorrect congestion caused by abrupt flows,an appropriate ECN marking is selected based on the queue length and its growth slope,and the congestion window(CWND)is adjusted by calculating RTT.Simultaneously,the marking threshold for queue length is continuously adapted using the current queue length of the switch as a parameter to accommodate changes in data centers.The evaluation conducted through Mininet simulations demonstrates that DA-DCTCP yields advantages in terms of throughput,flow completion time(FCT),latency,and resistance against packet loss.These benefits contribute to reducing data center congestion,enhancing the stability of data transmission,and improving throughput.展开更多
As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data so...As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.展开更多
With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits ...With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations.展开更多
In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster ...In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.展开更多
In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios ev...In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios even with the existing congestion control solutions. To addressthe head-of-line blocking problem of PFC, we propose a new congestioncontrol mechanism. The key point of Congestion Control Using In-NetworkTelemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry(INT) technology to obtain comprehensive congestion information, which isthen fed back to the sender to adjust the sending rate timely and accurately.It is possible to control congestion in time, converge to the target rate quickly,and maintain a near-zero queue length at the switch when using ICC. Weconducted Network Simulator-3 (NS-3) simulation experiments to test theICC’s performance. When compared to Congestion Control for Large-ScaleRDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Controlfor the Datacenter (TIMELY), and Re-architecting Congestion Managementin Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages andFlow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and11.2×, respectively.展开更多
With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,howeve...With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.展开更多
In the era of big data,the construction and implementation of a quality control audit system are particularly crucial.This article delves into the impact of big data technology on quality control auditing,establishes ...In the era of big data,the construction and implementation of a quality control audit system are particularly crucial.This article delves into the impact of big data technology on quality control auditing,establishes a quality control auditing system in the big data era,and elucidates the pathway to realizing this system.Through the application of big data technology to quality control audits,there is an enhancement in audit efficiency,the attainment of more accurate risk assessment,and the provision of robust support for the sustainable development of enterprises.展开更多
This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative r...This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative risk management approaches.This article proposes response strategies from four key aspects:establishing a proactive risk management culture,building a foundation in technology and data,conducting big data-driven risk analysis,and implementing predictive analysis and real-time monitoring.State-owned enterprises can foster a proactive risk management culture by cultivating employee risk awareness,demonstrating leadership,and establishing transparency and open communication.Additionally,data integration and analysis,leveraging the latest technology,are crucial factors that can help companies better identify risks and opportunities.展开更多
With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning ...With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning the interaction between the atmospheric boundary layer and wind turbine arrays,the generated wakes and their interactions,and wind energy harvesting.However,the majority of the existing ML models for predicting wind turbine wakes merely recreate Computational fluid dynamics(CFD)simulated data with analogous accuracy but reduced computational costs,thus providing surrogate models rather than enhanced data-enabled physics insights.Although ML-based surrogate models are useful to overcome current limitations associated with the high computational costs of CFD models,using ML to unveil processes from experimental data or enhance modeling capabilities is deemed a potential research direction to pursue.In this letter,we discuss recent achievements in the realm of ML modeling of wind turbine wakes and operations,along with new promising research strategies.展开更多
Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about...Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about individual Americans derived from consumer use of the internet and connected devices. Data profiles are then sold for profit. Government investigators use a legal loophole to purchase this data instead of obtaining a search warrant, which the Fourth Amendment would otherwise require. Consumers have lacked a reasonable means to fight or correct the information data brokers collect. Americans may not even be aware of the risks of data aggregation, which upends the test of reasonable expectations used in a search warrant analysis. Data aggregation should be controlled and regulated, which is the direction some privacy laws take. Legislatures must step forward to safeguard against shadowy data-profiling practices, whether abroad or at home. In the meantime, courts can modify their search warrant analysis by including data privacy principles.展开更多
Air pollution poses a critical threat to public health and environmental sustainability globally, and Nigeria is no exception. Despite significant economic growth and urban development, Nigeria faces substantial air q...Air pollution poses a critical threat to public health and environmental sustainability globally, and Nigeria is no exception. Despite significant economic growth and urban development, Nigeria faces substantial air quality challenges, particularly in urban centers. While outdoor air pollution has received considerable attention, the issue of indoor air quality remains underexplored yet equally critical. This study aims to develop a reliable, cost-effective, and user-friendly solution for continuous monitoring and reporting of indoor air quality, accessible from anywhere via a web interface. Addressing the urgent need for effective indoor air quality monitoring in urban hospitals, the research focuses on designing and implementing a smart indoor air quality monitoring system using Arduino technology. Employing an Arduino Uno, ESP8266 Wi-Fi module, and MQ135 gas sensor, the system collects real-time air quality data, transmits it to the ThingSpeak cloud platform, and visualizes it through a user-friendly web interface. This project offers a cost-effective, portable, and reliable solution for monitoring indoor air quality, aiming to mitigate health risks and promote a healthier living environment.展开更多
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy...In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.展开更多
In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchr...In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.展开更多
Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great s...Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height.展开更多
Owing to wide applications of automatic control systems in the process industries, the impacts of controller performance on industrial processes are becoming increasingly significant. Consequently, controller maintena...Owing to wide applications of automatic control systems in the process industries, the impacts of controller performance on industrial processes are becoming increasingly significant. Consequently, controller maintenance is critical to guarantee routine operations of industrial processes. The workflow of controller maintenance generally involves the following steps: monitor operating controller performance and detect performance degradation, diagnose probable root causes of control system malfunctions, and take specific actions to resolve associated problems. In this article, a comprehensive overview of the mainstream of control loop monitoring and diagnosis is provided, and some existing problems are also analyzed and discussed. From the viewpoint of synthesizing abundant information in the context of big data, some prospective ideas and promising methods are outlined to potentially solve problems in industrial applications.展开更多
Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, t...Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, this study compares the be- havior of two momentum control variable options-streamfunction velocity potential (ψ-χ) and horizontal wind components (U-V)-in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014. The wind increment from the single observation test shows that the ψ-χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity. On the contrary, the U-V control variable scheme objectively reflects the information of the observation itself. Furthermore, radial velocity data from 17 Doppler radars in eastern China are assimilated. As compared to the impact of conventional observation, the assimilation of radar radial velocity based on the U-V control variable scheme significantly improves the mesoscale dynamic field in the initial condition. The enhanced low-level jet stream, water vapor convergence and low-level wind shear result in better squall line forecasting. However, the ψ-χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field, which lead to a degraded precipitation forecast.展开更多
基金Key Research and Development and Promotion Program of Henan Province(No.222102210069)Zhongyuan Science and Technology Innovation Leading Talent Project(224200510003)National Natural Science Foundation of China(No.62102449).
文摘Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2022R1I1A3063257)supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley Support Program(2023-DD-RD-0152)supervised by the Innovation Foundation.
文摘Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.
基金supported by the National Key R&D Program of China(No.2021YFB2700800)the GHfund B(No.202302024490).
文摘The traffic within data centers exhibits bursts and unpredictable patterns.This rapid growth in network traffic has two consequences:it surpasses the inherent capacity of the network’s link bandwidth and creates an imbalanced network load.Consequently,persistent overload situations eventually result in network congestion.The Software Defined Network(SDN)technology is employed in data centers as a network architecture to enhance performance.This paper introduces an adaptive congestion control strategy,named DA-DCTCP,for SDN-based Data Centers.It incorporates Explicit Congestion Notification(ECN)and Round-Trip Time(RTT)to establish congestion awareness and an ECN marking model.To mitigate incorrect congestion caused by abrupt flows,an appropriate ECN marking is selected based on the queue length and its growth slope,and the congestion window(CWND)is adjusted by calculating RTT.Simultaneously,the marking threshold for queue length is continuously adapted using the current queue length of the switch as a parameter to accommodate changes in data centers.The evaluation conducted through Mininet simulations demonstrates that DA-DCTCP yields advantages in terms of throughput,flow completion time(FCT),latency,and resistance against packet loss.These benefits contribute to reducing data center congestion,enhancing the stability of data transmission,and improving throughput.
文摘As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.
基金This work was supported in part by the National Natural Science Foundation of China(62206109)the Fundamental Research Funds for the Central Universities(21620346)。
文摘With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations.
基金supported by the following funds:Defense Industrial Technology Development Program Grant:G20210513Shaanxi Provincal Department of Science and Technology Grant:2021KW-07Shaanxi Provincal Department of Science and Technology Grant:2022 QFY01-14.
文摘In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.
基金supported by the National Natural Science Foundation of China (No.62102046,62072249,62072056)JinWang,YongjunRen,and Jinbin Hu receive the grant,and the URLs to the sponsors’websites are https://www.nsfc.gov.cn/.This work is also funded by the National Science Foundation of Hunan Province (No.2022JJ30618,2020JJ2029).
文摘In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios even with the existing congestion control solutions. To addressthe head-of-line blocking problem of PFC, we propose a new congestioncontrol mechanism. The key point of Congestion Control Using In-NetworkTelemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry(INT) technology to obtain comprehensive congestion information, which isthen fed back to the sender to adjust the sending rate timely and accurately.It is possible to control congestion in time, converge to the target rate quickly,and maintain a near-zero queue length at the switch when using ICC. Weconducted Network Simulator-3 (NS-3) simulation experiments to test theICC’s performance. When compared to Congestion Control for Large-ScaleRDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Controlfor the Datacenter (TIMELY), and Re-architecting Congestion Managementin Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages andFlow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and11.2×, respectively.
基金supported by National Key Research and Development Plan in China(Grant No.2020YFB1005500)Beijing Natural Science Foundation(Grant No.M21034)BUPT Excellent Ph.D Students Foundation(Grant No.CX2023218)。
文摘With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.
文摘In the era of big data,the construction and implementation of a quality control audit system are particularly crucial.This article delves into the impact of big data technology on quality control auditing,establishes a quality control auditing system in the big data era,and elucidates the pathway to realizing this system.Through the application of big data technology to quality control audits,there is an enhancement in audit efficiency,the attainment of more accurate risk assessment,and the provision of robust support for the sustainable development of enterprises.
文摘This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative risk management approaches.This article proposes response strategies from four key aspects:establishing a proactive risk management culture,building a foundation in technology and data,conducting big data-driven risk analysis,and implementing predictive analysis and real-time monitoring.State-owned enterprises can foster a proactive risk management culture by cultivating employee risk awareness,demonstrating leadership,and establishing transparency and open communication.Additionally,data integration and analysis,leveraging the latest technology,are crucial factors that can help companies better identify risks and opportunities.
基金supported by the National Science Foundation(NSF)CBET,Fluid Dynamics CAREER program(Grant No.2046160),program manager Ron Joslin.
文摘With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning the interaction between the atmospheric boundary layer and wind turbine arrays,the generated wakes and their interactions,and wind energy harvesting.However,the majority of the existing ML models for predicting wind turbine wakes merely recreate Computational fluid dynamics(CFD)simulated data with analogous accuracy but reduced computational costs,thus providing surrogate models rather than enhanced data-enabled physics insights.Although ML-based surrogate models are useful to overcome current limitations associated with the high computational costs of CFD models,using ML to unveil processes from experimental data or enhance modeling capabilities is deemed a potential research direction to pursue.In this letter,we discuss recent achievements in the realm of ML modeling of wind turbine wakes and operations,along with new promising research strategies.
文摘Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about individual Americans derived from consumer use of the internet and connected devices. Data profiles are then sold for profit. Government investigators use a legal loophole to purchase this data instead of obtaining a search warrant, which the Fourth Amendment would otherwise require. Consumers have lacked a reasonable means to fight or correct the information data brokers collect. Americans may not even be aware of the risks of data aggregation, which upends the test of reasonable expectations used in a search warrant analysis. Data aggregation should be controlled and regulated, which is the direction some privacy laws take. Legislatures must step forward to safeguard against shadowy data-profiling practices, whether abroad or at home. In the meantime, courts can modify their search warrant analysis by including data privacy principles.
文摘Air pollution poses a critical threat to public health and environmental sustainability globally, and Nigeria is no exception. Despite significant economic growth and urban development, Nigeria faces substantial air quality challenges, particularly in urban centers. While outdoor air pollution has received considerable attention, the issue of indoor air quality remains underexplored yet equally critical. This study aims to develop a reliable, cost-effective, and user-friendly solution for continuous monitoring and reporting of indoor air quality, accessible from anywhere via a web interface. Addressing the urgent need for effective indoor air quality monitoring in urban hospitals, the research focuses on designing and implementing a smart indoor air quality monitoring system using Arduino technology. Employing an Arduino Uno, ESP8266 Wi-Fi module, and MQ135 gas sensor, the system collects real-time air quality data, transmits it to the ThingSpeak cloud platform, and visualizes it through a user-friendly web interface. This project offers a cost-effective, portable, and reliable solution for monitoring indoor air quality, aiming to mitigate health risks and promote a healthier living environment.
文摘In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.
基金supported by General Program (No. 60774022)State Key Program (No. 60834001) of National Natural Science Foundation of China
文摘In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC1407003,2017YFC1405300)
文摘Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height.
基金Supported by the National Basic Research Program of China(2012CB720505)the National Natural Science Foundation of China(21276137,61433001)+1 种基金Tsinghua University Initiative Scientific Research Programthe seventh framework programme(FP7-PEOPLE-2013-IRSES-612230)of European Union
文摘Owing to wide applications of automatic control systems in the process industries, the impacts of controller performance on industrial processes are becoming increasingly significant. Consequently, controller maintenance is critical to guarantee routine operations of industrial processes. The workflow of controller maintenance generally involves the following steps: monitor operating controller performance and detect performance degradation, diagnose probable root causes of control system malfunctions, and take specific actions to resolve associated problems. In this article, a comprehensive overview of the mainstream of control loop monitoring and diagnosis is provided, and some existing problems are also analyzed and discussed. From the viewpoint of synthesizing abundant information in the context of big data, some prospective ideas and promising methods are outlined to potentially solve problems in industrial applications.
基金jointly supported by the National Fundamental Research(973)Program of China(Grant Nos.2015CB452801 and 2013CB430100)the Jiangsu Meteorological Bureau Research Fund Project for the Youth(Grant Nos.Q201514 and Q201407)+3 种基金the Shandong Institute of Meteorological Sciences Research Fund Project(Grant No.SDQXKF2015M10)the Jiangsu Provincial Key Technology R&D Program(Grant No.BE2013730)the Jiangsu Meteorological Bureau Key Research Fund Project(Grant No.KZ201502)the National Key Technology R&D Program(Grant No.2014BAG01B01)
文摘Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, this study compares the be- havior of two momentum control variable options-streamfunction velocity potential (ψ-χ) and horizontal wind components (U-V)-in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014. The wind increment from the single observation test shows that the ψ-χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity. On the contrary, the U-V control variable scheme objectively reflects the information of the observation itself. Furthermore, radial velocity data from 17 Doppler radars in eastern China are assimilated. As compared to the impact of conventional observation, the assimilation of radar radial velocity based on the U-V control variable scheme significantly improves the mesoscale dynamic field in the initial condition. The enhanced low-level jet stream, water vapor convergence and low-level wind shear result in better squall line forecasting. However, the ψ-χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field, which lead to a degraded precipitation forecast.