Under the soil and climate conditions in semi-arid area of Jilin Province, the growth and development, yield and its components of maize under one-off fertilization and traditional fertilization were compared and anal...Under the soil and climate conditions in semi-arid area of Jilin Province, the growth and development, yield and its components of maize under one-off fertilization and traditional fertilization were compared and analyzed in this study. The results showed that, under the same field management, the two fertilization methods had no effect on the time when maize plants grew into each growth stage; the one-off fertilization was slightly better than the traditional fertilization in dry weight of each part of the plant, ear traits and yield; and the values of the two methods of fertilization varied from each other and were unstable. In production, the one-off fertilization saves the top dressing process, simplifes the operation process and reduces the production input, which is of great signifcance to the development of modern agriculture.展开更多
[Objective] The aim was to research effects of N fertilizer reduction and application of N fertilizer (as base fertilizer) on rapeseed yield and N absorption. [Method] Based on Ganyouza No.5, the ratio of N, P2O5 an...[Objective] The aim was to research effects of N fertilizer reduction and application of N fertilizer (as base fertilizer) on rapeseed yield and N absorption. [Method] Based on Ganyouza No.5, the ratio of N, P2O5 andK2O was set at 1:0.5:0.5; N fertilizers were set involving reduced quantity at 150 kg/hm2 and preferred quantity at 180 kg/hm2; 100%, 80% and 60% of N fertilizers were applied as base fertilizers in the test respectively. In general, field tests were conducted to explore effects of reduced N fertilizer and application of N fertilizer as base fertilizer on rapeseed yield and N absorption. [Resalt] When applied N fertilizer as base fertilizer was the same, plant height, stem diameter, length of major inflorescence, number of effective branch, pod number per plant, seed number per pod, and biomass yield in group with preferred N quantity were significantly higher than those in group with reduced N fertilizer. Rapeseed yield and profits in group with preferred N quantity were signifi- cantly higher than those in group with reduced N fertilizer in field with moderate fertili- ty. In fields with higher fertility, however, the two factors were just a little higher. In group with reduced N fertilizer, use efficiency of N fertilizer, N uptake efficiency, par- tial factor productivity and harvest index of N were all significantly higher than those in group with preferred N fertilizer. Agronomic nitrogen use efficiency in group with preferred N fertilizer was significantly higher than that in group with reduced N fertiliz- er in field with moderate fertility and was significantly lower in field with high yield. With amounts of N, P and K fertilizers fixed, economic characters, yield constitution, yield, profits and N absorption in group, where 60% of N fertilizers were applied as base fertilizer, were significantly higher than those in groups with 80% or 100% of base fertilizer (N fertilizers). These indicated that rational fertilization would maintain rapeseed yield high and reduce N input to improve use efficiency of N fertilizer. On the other hand, it is effective to improve rapeseed yield.'to reduce N fertilizer to 150 kg/hm2, and application of 60%. of N fertilizers as base fertilizer is still proved optimal at present. [Conclusion] The research provides.theoretioal and technical references for improvement of yield of rapeseed and efficiency of N fertilizer.展开更多
This study aimed to investigate the effects of reducing application amount of base fertilizer and increasing application time of leaf fertilizer on corn yield so as to find out the most economical fertilization way fo...This study aimed to investigate the effects of reducing application amount of base fertilizer and increasing application time of leaf fertilizer on corn yield so as to find out the most economical fertilization way for corn. On the basis of protecting environment, the economic benefits will be also increased. The results showed that the corn yield was increased with the increase of application amount of base fertilizer, and was also increased with the increase of application time of leaf fertilizer.For each time of spaying of leaf fertilizer, the corn yield was increased 258-592.5kg/hm^2 with increase amplitude ranging from 2.3%-5.6%.展开更多
Biochar is a soil amendment for increasing soil quality and decreasing nutrient leaching. However, there is little information on the impact of biochar-based fertilizer(BF) on soil nutrient leaching in agricultural so...Biochar is a soil amendment for increasing soil quality and decreasing nutrient leaching. However, there is little information on the impact of biochar-based fertilizer(BF) on soil nutrient leaching in agricultural soils. We conducted a soil column leaching experiment to study the effects of BF on the leaching of total nitrogen(TN), total phosphorus, and total potassium(TK) in tobacco soils. The distribution characteristics of NH_4^+-N, available P, and available K in soil profiles were analyzed after the application of BF. Biochar was prepared by pyrolysis of fluecured tobacco stems. It was applied at four levels, 0%, 3%,9%, and 15%(w/w), respectively, to the compound fertilizer. Compared with the control, the leaching loss of soil TN decreased by 8.36%, 6.72%, and 6.45%, and the loss of soil TK decreased by 9.18%, 9.31% and 11.82% in the 3%,9%, and 15% BF treatments, respectively. However, BF had no significant effect on the P leaching due to the low movement of P in the soil profile. In addition, the BF addition increased the immobilization of NH_4^+-N, available P, and available K in the soil profile. These results indicate that addition of BF to a tobacco-planting soil reduced nutrient leaching, and suggest that BF could be an effective method of applying biochar to agriculture fields.展开更多
The article deals with the effects of urea and controlled release nitrogen fertilizer (CRNF) on dynamics of pH, electronic conductivity (EC), total nitrogen (TN), NH4^+-N and NO3 -N in floodwater, and the regul...The article deals with the effects of urea and controlled release nitrogen fertilizer (CRNF) on dynamics of pH, electronic conductivity (EC), total nitrogen (TN), NH4^+-N and NO3 -N in floodwater, and the regulation of runoff TN loss from paddy field-based two-cropping rice in Dongting Lake, China, and probes the best fertilization management for controlling N loss. Studies were conducted through modeling alluvial sandy loamy paddy soil (ASP) and purple calcareous clayey paddy soil (PCP) using lysimeter, following the sequence of the soil profiles identified by investigating soil profile. After application of urea in paddy field-based two-cropping rice, TN and NHa+-N concentrations in floodwater reached peak on the 1st and the 3rd day, respectively, and then decreased rapidly over time; all the floodwater NO3--N concentrations were very low; the pH of floodwater gradually rose in case of early rice within 15 d (late rice within 3 d) after application of urea, and EC remained consistent with the dynamics of NH4^+-N. The applied CRNF, especially 70% CRNF, led to significantly lower floodwater TN and NH4^+ concentrations, pH, and EC values compared with urea within 15 d after application. The monitoring result for N loss due to natural rainfall runoff indicated that the amount of TN lost in runoff from paddy field- based two-cropping rice with urea application in Dongting Lake area was 7.47 kg ha^-1, which accounted for 2.49% of urea- N applied, and that with CRNF and 70% CRNF application decreased 24.5 and 27.2% compared with urea application, respectively. The two runoff events, which occurred within 20 d after application, contributed significantly to TN loss from paddy field. TN loss due to the two runoffs in urea, CRNF, and 70% CRNF treatments accounted for 72, 70, and 58% of the total TN loss due to runoff over the whole rice growth season, respectively. And the TN loss in these two CRNF treatments due to the first run-off event at the 10th day after application to early rice decreased 44.9 and 44.2% compared with urea, respectively. In conclusion, the 15-d period after application of urea was the critical time during which N loss occurred due to high floodwater N concentrations. But CRNF decreased N concentrations greatly in floodwater and runoff water during this period. As a result, it obviously reduced TN loss in runoff over the whole rice growth season.展开更多
To explore fertilization methods for wine bamboo cultivation in southwestern semi-arid areas of China, this study analyzed annual changes in sap yield and nutrient composition from May 2013 to March 2015 by using bamb...To explore fertilization methods for wine bamboo cultivation in southwestern semi-arid areas of China, this study analyzed annual changes in sap yield and nutrient composition from May 2013 to March 2015 by using bamboo charcoal-based bio-fertilizer (ZT) and organic fertilizer treatments (CK). The study also provided basic data for functional beverage preparation and for application of ZT. The results of the two experimental cycles revealed that under the ZT treatment, sap was available for collection from May, the beginning of the rainy season, to November, the beginning of the dry season. The period of abundance was July to October with the highest yield of sap of 3.18 L stalk-1 in September, 2014, still lower than the moso bamboo sap, which was likely due to the scale of sap production of monopodial bamboos being different from that of sympodial bamboos. In January, trace amounts of sap were still detected, suggesting that the effect of the treatment was significant. Moreover,in the dry season, soil water content and soil temperatures at 10-15 cm depths indicated that the fertilizer had the ability to maintain soil temperatures and moisture. In both fertilizer treatments, the correlation between the collected sap and environmental parameters was significant. In the ZT treatment for the entire 2 years, the effectual environ- mental factors were soil water at 10-15 cm, air tempera- tures, and wind speeds. The same determining factors were observed for the rainy season. In the CK treatments, the effectual environmental factors for the entire year and the rainy season were soil water at 0-5 cm and air moisture. The bamboo charcoal-based bio-fertilizer elevated the potassium, calcium, iron, manganese, copper, and total phosphorus content, simultaneously increasing the sap yield, protein and reducing sugar contents, and with a relative increase in sap pH. The wine bamboo sap con- tained 18 amino acids. Glutamic acid, alanine and proline were the most abundant. Compared to the controls, the treatment showed higher levels of all amino acids. Thus, the ZT treatment could be more beneficial to the development of root systems because the function of heat preservation and moisture retention prolong the sap collection period, increase sap yields, and elevate mineral element, conventional nutrients, and amino acid contents with evident fertilization effects and broader application prospects.展开更多
Studies on Soil Test Crop Response Based Integrated Plant Nutrition System(STCR-IPNS)were conducted for three years adopting the Inductive cum Targeted Yield Model,on alfisols of Unified Andhra Pradesh,Southern India ...Studies on Soil Test Crop Response Based Integrated Plant Nutrition System(STCR-IPNS)were conducted for three years adopting the Inductive cum Targeted Yield Model,on alfisols of Unified Andhra Pradesh,Southern India during summer 2016-2018 in order to develop fertilizer prescriptions through IPNS for the desired yield targets of Sesamum under field conditions.The bases for making the fertilizer prescriptions viz.nutrient requirement(NR),contribution of nutrients from soil(Cs),fertilizer(Cf)and vermicompost(CVC)were computed using the field experimental data.Making use of these basic parameters,the fertilizer prescription equations were developed under NPK alone and under IPNS for the desired yield targets of Sesamum for a range of soil test values.The quantity of fertilizers contributed by the application of vermicompost was assessed.Nutrient requirement to produce 100 kg of sesame seed was worked out to be 10.20 kg N,3.90 kg P2O5 and 5.22 kg K2O.In the present investigation,the requirement of N was higher which is followed by K2O and P2O5.The requirement of N was 2.62 times higher than P and 1.95 times higher than K.The percent contribution of N,P and K was 12.25,15.75 and 6.00 from soils,41.68,22.85 and 59.97 from fertilizer and 9.87,6.74 and 18.65 from organic manures,respectively.Thus the Inductive cum Targeted Yield Model used to develop fertilizer prescription equations provides a strong basis for soil fertility maintenance consistent with high productivity and efficient nutrient management in farming for sustainable and enduring agriculture.展开更多
[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme a...[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme activity were studied,so as to provide a theoretical basis for the application of foliar fertilizers in cotton production. [Methods]Through two years of field experiments,six treatments were set in total,namely spraying water( CK),traditional Bordeaux mixture( BDM),Kocide 2000( KCD),copper-based nutrient foliar fertilizer( CF),iron-copper-based nutrient foliar fertilizer( CFFe),and zinc-boron-copper-based nutrient foliar fertilizer( CFZnB). Randomized block arrangement was adopted. Chlorophyll content in leaves was measured at each growth stage of the cotton. Photosynthetic characteristics of leaves were measured at the peak bolling stage. Plants were sampled at initial boll opening stage. The whole plant was divided into root,stem,leaf and cotton boll parts,in which the total copper,total zinc,total iron contents and accumulations were determined. Soil samples were collected from each plot,followed by the determination of soil enzyme activity. Disease index was investigated at bud,flowering and boll-forming and boll opening stage. [Results]( 1) Spraying CFFe,CFZnB,CF and KCD could significantly improve chlorophyll content of cotton leaves,and the CFFe treatment had the highest increase up to13. 30%,followed by the CFZnB treatment,which was 11. 40% higher than the CK; and photosynthetic rate,stomata conductance and transpiration rate could be improved significantly,and the CFFe treatment showed the highest photosynthetic rate,which increased by 26. 35% compared with the CK,followed by the CFZnB treatment,which increased by 17. 96% compared with CK; and intercellular CO2 concentration was significantly reduced.( 2) Spraying BDM,KCD,CF,CFFe and CFZnB can significantly increase total copper content and accumulation in various cotton organs( except the total copper content in the stem part of the CFZnB treatment; the CFZnB and CFFe treatments can significantly increase total zinc content and accumulation in various cotton organs; and spraying CFFe,CFZnB and CF can significantly increase total iron content and accumulation in various cotton organs( except the total iron content in the stem part of the CF treatment).( 3)Spraying CFFe,CFZnB,CF,KCD and BDM greatly reduced the disease index at flowering and boll-forming and boll opening stages.( 4) The CFZnB and CFFe treatments had the highest soil urease activity,which was 7. 14% higher than that of the CK,but the difference from the CK was not significant; the catalase activity of each treatment was significantly higher than that of the BDM treatment; and the sucrase activity of each treatment was significantly higher than that of the CK.( 5) Spraying CFFe,CFZnB,CF and KCD significantly improved lint yield of cotton,and the CFZnB treatment showed the highest yield increase up to 12. 34%,followed by the CFFe treatment,with an increase in the range of 8. 77%-10. 20%. [Conclusions]Copper-based nutrient foliar fertilizers have dual functions of disease control and prevention and plant nutrition and health care,and not only can significantly increase cotton yield,but also has certain disease prevention effect.It is recommended to use copper-based nutrient foliar fertilizers.展开更多
基金Supported by National Maize Industry Technical System Project(CARS-02-42)Scientific and Technological Innovation Project for High Yield and Efficiency of Food Grain(2017YFD0300605)Gongzhuling Scientific Observation and Experiment Station for High Efficiency Water Use in Crop,Ministry of Agriculture~~
文摘Under the soil and climate conditions in semi-arid area of Jilin Province, the growth and development, yield and its components of maize under one-off fertilization and traditional fertilization were compared and analyzed in this study. The results showed that, under the same field management, the two fertilization methods had no effect on the time when maize plants grew into each growth stage; the one-off fertilization was slightly better than the traditional fertilization in dry weight of each part of the plant, ear traits and yield; and the values of the two methods of fertilization varied from each other and were unstable. In production, the one-off fertilization saves the top dressing process, simplifes the operation process and reduces the production input, which is of great signifcance to the development of modern agriculture.
基金Supported by China Modern Agriculture Research System (CARS-13)Jiangxi Technological Innovation Team (20115BCB29020)Innovation Funds of Jiangxi Academy of Agricultural Sciences (2011CJJ012)~~
文摘[Objective] The aim was to research effects of N fertilizer reduction and application of N fertilizer (as base fertilizer) on rapeseed yield and N absorption. [Method] Based on Ganyouza No.5, the ratio of N, P2O5 andK2O was set at 1:0.5:0.5; N fertilizers were set involving reduced quantity at 150 kg/hm2 and preferred quantity at 180 kg/hm2; 100%, 80% and 60% of N fertilizers were applied as base fertilizers in the test respectively. In general, field tests were conducted to explore effects of reduced N fertilizer and application of N fertilizer as base fertilizer on rapeseed yield and N absorption. [Resalt] When applied N fertilizer as base fertilizer was the same, plant height, stem diameter, length of major inflorescence, number of effective branch, pod number per plant, seed number per pod, and biomass yield in group with preferred N quantity were significantly higher than those in group with reduced N fertilizer. Rapeseed yield and profits in group with preferred N quantity were signifi- cantly higher than those in group with reduced N fertilizer in field with moderate fertili- ty. In fields with higher fertility, however, the two factors were just a little higher. In group with reduced N fertilizer, use efficiency of N fertilizer, N uptake efficiency, par- tial factor productivity and harvest index of N were all significantly higher than those in group with preferred N fertilizer. Agronomic nitrogen use efficiency in group with preferred N fertilizer was significantly higher than that in group with reduced N fertiliz- er in field with moderate fertility and was significantly lower in field with high yield. With amounts of N, P and K fertilizers fixed, economic characters, yield constitution, yield, profits and N absorption in group, where 60% of N fertilizers were applied as base fertilizer, were significantly higher than those in groups with 80% or 100% of base fertilizer (N fertilizers). These indicated that rational fertilization would maintain rapeseed yield high and reduce N input to improve use efficiency of N fertilizer. On the other hand, it is effective to improve rapeseed yield.'to reduce N fertilizer to 150 kg/hm2, and application of 60%. of N fertilizers as base fertilizer is still proved optimal at present. [Conclusion] The research provides.theoretioal and technical references for improvement of yield of rapeseed and efficiency of N fertilizer.
文摘This study aimed to investigate the effects of reducing application amount of base fertilizer and increasing application time of leaf fertilizer on corn yield so as to find out the most economical fertilization way for corn. On the basis of protecting environment, the economic benefits will be also increased. The results showed that the corn yield was increased with the increase of application amount of base fertilizer, and was also increased with the increase of application time of leaf fertilizer.For each time of spaying of leaf fertilizer, the corn yield was increased 258-592.5kg/hm^2 with increase amplitude ranging from 2.3%-5.6%.
基金supported by the National Natural Science Foundation of China (Nos. 41773144 U1612441+5 种基金 41503080)the Key Technologies R&D Project in Agriculture of Guizhou province (Nos. NY [2013] 3019 NY [2015] 3001-1)the Major S&T Special Project of Guizhou province (No. [2014] 6015-21)the Opening Fund of the State Key Laboratory of Environmental Geochemistry (SKLEG2018905)Innovative Plan of Guizhou province and the Science and Technology Project of Guizhou Tobacco Company (201614)
文摘Biochar is a soil amendment for increasing soil quality and decreasing nutrient leaching. However, there is little information on the impact of biochar-based fertilizer(BF) on soil nutrient leaching in agricultural soils. We conducted a soil column leaching experiment to study the effects of BF on the leaching of total nitrogen(TN), total phosphorus, and total potassium(TK) in tobacco soils. The distribution characteristics of NH_4^+-N, available P, and available K in soil profiles were analyzed after the application of BF. Biochar was prepared by pyrolysis of fluecured tobacco stems. It was applied at four levels, 0%, 3%,9%, and 15%(w/w), respectively, to the compound fertilizer. Compared with the control, the leaching loss of soil TN decreased by 8.36%, 6.72%, and 6.45%, and the loss of soil TK decreased by 9.18%, 9.31% and 11.82% in the 3%,9%, and 15% BF treatments, respectively. However, BF had no significant effect on the P leaching due to the low movement of P in the soil profile. In addition, the BF addition increased the immobilization of NH_4^+-N, available P, and available K in the soil profile. These results indicate that addition of BF to a tobacco-planting soil reduced nutrient leaching, and suggest that BF could be an effective method of applying biochar to agriculture fields.
基金We acknowledge the support from the Phosphorus and Potassium Institute in Canada with China scheme (Canada-Sino Cooperation Project: HN- 13) and from the National Natural Science Foundation of China (30270770).
文摘The article deals with the effects of urea and controlled release nitrogen fertilizer (CRNF) on dynamics of pH, electronic conductivity (EC), total nitrogen (TN), NH4^+-N and NO3 -N in floodwater, and the regulation of runoff TN loss from paddy field-based two-cropping rice in Dongting Lake, China, and probes the best fertilization management for controlling N loss. Studies were conducted through modeling alluvial sandy loamy paddy soil (ASP) and purple calcareous clayey paddy soil (PCP) using lysimeter, following the sequence of the soil profiles identified by investigating soil profile. After application of urea in paddy field-based two-cropping rice, TN and NHa+-N concentrations in floodwater reached peak on the 1st and the 3rd day, respectively, and then decreased rapidly over time; all the floodwater NO3--N concentrations were very low; the pH of floodwater gradually rose in case of early rice within 15 d (late rice within 3 d) after application of urea, and EC remained consistent with the dynamics of NH4^+-N. The applied CRNF, especially 70% CRNF, led to significantly lower floodwater TN and NH4^+ concentrations, pH, and EC values compared with urea within 15 d after application. The monitoring result for N loss due to natural rainfall runoff indicated that the amount of TN lost in runoff from paddy field- based two-cropping rice with urea application in Dongting Lake area was 7.47 kg ha^-1, which accounted for 2.49% of urea- N applied, and that with CRNF and 70% CRNF application decreased 24.5 and 27.2% compared with urea application, respectively. The two runoff events, which occurred within 20 d after application, contributed significantly to TN loss from paddy field. TN loss due to the two runoffs in urea, CRNF, and 70% CRNF treatments accounted for 72, 70, and 58% of the total TN loss due to runoff over the whole rice growth season, respectively. And the TN loss in these two CRNF treatments due to the first run-off event at the 10th day after application to early rice decreased 44.9 and 44.2% compared with urea, respectively. In conclusion, the 15-d period after application of urea was the critical time during which N loss occurred due to high floodwater N concentrations. But CRNF decreased N concentrations greatly in floodwater and runoff water during this period. As a result, it obviously reduced TN loss in runoff over the whole rice growth season.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY14C030008)Forestry Industry Standard Project of China(2015LY-080)
文摘To explore fertilization methods for wine bamboo cultivation in southwestern semi-arid areas of China, this study analyzed annual changes in sap yield and nutrient composition from May 2013 to March 2015 by using bamboo charcoal-based bio-fertilizer (ZT) and organic fertilizer treatments (CK). The study also provided basic data for functional beverage preparation and for application of ZT. The results of the two experimental cycles revealed that under the ZT treatment, sap was available for collection from May, the beginning of the rainy season, to November, the beginning of the dry season. The period of abundance was July to October with the highest yield of sap of 3.18 L stalk-1 in September, 2014, still lower than the moso bamboo sap, which was likely due to the scale of sap production of monopodial bamboos being different from that of sympodial bamboos. In January, trace amounts of sap were still detected, suggesting that the effect of the treatment was significant. Moreover,in the dry season, soil water content and soil temperatures at 10-15 cm depths indicated that the fertilizer had the ability to maintain soil temperatures and moisture. In both fertilizer treatments, the correlation between the collected sap and environmental parameters was significant. In the ZT treatment for the entire 2 years, the effectual environ- mental factors were soil water at 10-15 cm, air tempera- tures, and wind speeds. The same determining factors were observed for the rainy season. In the CK treatments, the effectual environmental factors for the entire year and the rainy season were soil water at 0-5 cm and air moisture. The bamboo charcoal-based bio-fertilizer elevated the potassium, calcium, iron, manganese, copper, and total phosphorus content, simultaneously increasing the sap yield, protein and reducing sugar contents, and with a relative increase in sap pH. The wine bamboo sap con- tained 18 amino acids. Glutamic acid, alanine and proline were the most abundant. Compared to the controls, the treatment showed higher levels of all amino acids. Thus, the ZT treatment could be more beneficial to the development of root systems because the function of heat preservation and moisture retention prolong the sap collection period, increase sap yields, and elevate mineral element, conventional nutrients, and amino acid contents with evident fertilization effects and broader application prospects.
基金This work was carried out under part of AICRP on Soil Test Crop Response,ICAR at PJTSAU,Hyderabad-500030,India.
文摘Studies on Soil Test Crop Response Based Integrated Plant Nutrition System(STCR-IPNS)were conducted for three years adopting the Inductive cum Targeted Yield Model,on alfisols of Unified Andhra Pradesh,Southern India during summer 2016-2018 in order to develop fertilizer prescriptions through IPNS for the desired yield targets of Sesamum under field conditions.The bases for making the fertilizer prescriptions viz.nutrient requirement(NR),contribution of nutrients from soil(Cs),fertilizer(Cf)and vermicompost(CVC)were computed using the field experimental data.Making use of these basic parameters,the fertilizer prescription equations were developed under NPK alone and under IPNS for the desired yield targets of Sesamum for a range of soil test values.The quantity of fertilizers contributed by the application of vermicompost was assessed.Nutrient requirement to produce 100 kg of sesame seed was worked out to be 10.20 kg N,3.90 kg P2O5 and 5.22 kg K2O.In the present investigation,the requirement of N was higher which is followed by K2O and P2O5.The requirement of N was 2.62 times higher than P and 1.95 times higher than K.The percent contribution of N,P and K was 12.25,15.75 and 6.00 from soils,41.68,22.85 and 59.97 from fertilizer and 9.87,6.74 and 18.65 from organic manures,respectively.Thus the Inductive cum Targeted Yield Model used to develop fertilizer prescription equations provides a strong basis for soil fertility maintenance consistent with high productivity and efficient nutrient management in farming for sustainable and enduring agriculture.
文摘[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme activity were studied,so as to provide a theoretical basis for the application of foliar fertilizers in cotton production. [Methods]Through two years of field experiments,six treatments were set in total,namely spraying water( CK),traditional Bordeaux mixture( BDM),Kocide 2000( KCD),copper-based nutrient foliar fertilizer( CF),iron-copper-based nutrient foliar fertilizer( CFFe),and zinc-boron-copper-based nutrient foliar fertilizer( CFZnB). Randomized block arrangement was adopted. Chlorophyll content in leaves was measured at each growth stage of the cotton. Photosynthetic characteristics of leaves were measured at the peak bolling stage. Plants were sampled at initial boll opening stage. The whole plant was divided into root,stem,leaf and cotton boll parts,in which the total copper,total zinc,total iron contents and accumulations were determined. Soil samples were collected from each plot,followed by the determination of soil enzyme activity. Disease index was investigated at bud,flowering and boll-forming and boll opening stage. [Results]( 1) Spraying CFFe,CFZnB,CF and KCD could significantly improve chlorophyll content of cotton leaves,and the CFFe treatment had the highest increase up to13. 30%,followed by the CFZnB treatment,which was 11. 40% higher than the CK; and photosynthetic rate,stomata conductance and transpiration rate could be improved significantly,and the CFFe treatment showed the highest photosynthetic rate,which increased by 26. 35% compared with the CK,followed by the CFZnB treatment,which increased by 17. 96% compared with CK; and intercellular CO2 concentration was significantly reduced.( 2) Spraying BDM,KCD,CF,CFFe and CFZnB can significantly increase total copper content and accumulation in various cotton organs( except the total copper content in the stem part of the CFZnB treatment; the CFZnB and CFFe treatments can significantly increase total zinc content and accumulation in various cotton organs; and spraying CFFe,CFZnB and CF can significantly increase total iron content and accumulation in various cotton organs( except the total iron content in the stem part of the CF treatment).( 3)Spraying CFFe,CFZnB,CF,KCD and BDM greatly reduced the disease index at flowering and boll-forming and boll opening stages.( 4) The CFZnB and CFFe treatments had the highest soil urease activity,which was 7. 14% higher than that of the CK,but the difference from the CK was not significant; the catalase activity of each treatment was significantly higher than that of the BDM treatment; and the sucrase activity of each treatment was significantly higher than that of the CK.( 5) Spraying CFFe,CFZnB,CF and KCD significantly improved lint yield of cotton,and the CFZnB treatment showed the highest yield increase up to 12. 34%,followed by the CFFe treatment,with an increase in the range of 8. 77%-10. 20%. [Conclusions]Copper-based nutrient foliar fertilizers have dual functions of disease control and prevention and plant nutrition and health care,and not only can significantly increase cotton yield,but also has certain disease prevention effect.It is recommended to use copper-based nutrient foliar fertilizers.