A new way to solve the scheduling problem ofgarment assembly line based on genetic algorithmwas proposed. The chromosome was decoded usingtask precedence relation and after the operation ofreproduction, crossover and ...A new way to solve the scheduling problem ofgarment assembly line based on genetic algorithmwas proposed. The chromosome was decoded usingtask precedence relation and after the operation ofreproduction, crossover and mutation, the globaloptimal result can be obtained. Fitness function wasrepresented by smoothness Index ( SI ). Thesimulation shows that the method proposed in thispaper is better than the conventional way and theoptimized solution can be got in this way.展开更多
This paper studies the parameter design and the performance optimization of a Kanban system without stockouts in a multi-stage, mixed-model assembly line. The model of a Kanban system based on production processes is ...This paper studies the parameter design and the performance optimization of a Kanban system without stockouts in a multi-stage, mixed-model assembly line. The model of a Kanban system based on production processes is established by examining the relationship among the set-up time, the amount of work in process (WIP), the capacity indicated by a Kanban, and the takt-time ratio. A novel method for optimizing performance on the premise of no stockouts is proposed. Empirical results show that the amount of WIP is reduced remarkably after optimization.展开更多
基金Financed by Henan provincial Fund (No. 0324300201)
文摘A new way to solve the scheduling problem ofgarment assembly line based on genetic algorithmwas proposed. The chromosome was decoded usingtask precedence relation and after the operation ofreproduction, crossover and mutation, the globaloptimal result can be obtained. Fitness function wasrepresented by smoothness Index ( SI ). Thesimulation shows that the method proposed in thispaper is better than the conventional way and theoptimized solution can be got in this way.
基金supported by the Guangdong Natural Science Foundation under Grant No.B6080170
文摘This paper studies the parameter design and the performance optimization of a Kanban system without stockouts in a multi-stage, mixed-model assembly line. The model of a Kanban system based on production processes is established by examining the relationship among the set-up time, the amount of work in process (WIP), the capacity indicated by a Kanban, and the takt-time ratio. A novel method for optimizing performance on the premise of no stockouts is proposed. Empirical results show that the amount of WIP is reduced remarkably after optimization.