期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH_(3) at low temperature
1
作者 Shuang Qiu Yonghou Xiao +3 位作者 Haoran Wu Shengnan Lu Qidong Zhao Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期193-202,共10页
NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperat... NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperatures are essential to denitration. In this work, a series of bimetallic CeCu-SAPO-34 molecular sieves were synthesized by one-step hydrothermal method. The Ce Cu-SAPO-34 maintained good crystallinity and a regular hexahedron appearance of Cu-SAPO-34 after introducing Ce species, while exhibiting a higher specific surface area and pore volume. The as-prepared CeCu-SAPO-34 with 0.02%(mass) Ce constituent exhibited the best catalytic activity below 300℃ and a maximum NO_(x) conversion of 99% was attained;the NO_(x) removal rates of more than 68% and 94% were achieved at 150℃ and 200℃, respectively. And the introduction of cerium species in Cu-SAPO-34 improves the low-temperature hydrothermal stability of the catalyst towards NH_(3)-SCR reaction. Additionally, the introduced Ce species could enhance the formation of abundant weak Br?nsted acid centers and promote the synergistic effect between CuO grains and isolated Cu^(2+) to enhance the redox cycle, which benefit the NH_(3)-SCR reaction.This work provides a facile synthesis method of high-efficiency SCR denitration catalysts towards diesel vehicles exhaust treatment under low temperature. 展开更多
关键词 CeCu-SAPO-34 Selective catalytic reduction(SCR) Low temperature DeNO_(x) one-pot synthesis
下载PDF
Competing reduction induced homogeneous oxygen doping to unlock MoS_(2)basal planes for faster polysulfides conversion 被引量:2
2
作者 Da Lei Wenzhe Shang +10 位作者 Xu Zhang Yongpeng Li Xiaoshan Shi Shaoming Qiao Qian Wang Qiang Zhang Ce Hao Hui Xu Guohua Chen Gaohong He Fengxiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期26-34,I0002,共10页
The parasitic polysulfides shuttle effect greatly hinders the practical application of lithium sulfur batteries,and this issue can be addressed by promoting polysulfides conversion with catalytic materials such as Mo ... The parasitic polysulfides shuttle effect greatly hinders the practical application of lithium sulfur batteries,and this issue can be addressed by promoting polysulfides conversion with catalytic materials such as Mo S_(2).However,the catalytic activity of Mo S_(2)mainly relies on edge sites,but is limited by inert basal planes.We herein report a novel,facile,ethylene glycol enabled competing reduction strategy to dope Mo S_(2)homogeneously with oxygen atoms so that its inert basal planes can be unlocked.Ethylene glycol works as a reducing agent and competes with thiourea to react with ammonium molybdate,leading to insufficient sulfuration of Mo,and consequent formation of O-Mo S_(2).Our theoretical and experimental investigations indicate that the homogeneously distributed O dopants can create abundant adsorption/-catalytic sites in the Mo S_(2)basal planes,enlarge the inter-plane distance to promote ion transport,and thus enhance the catalytic conversion of polysulfides.The oxygen doped Mo S_(2)(O-Mo S_(2))is supported on carbon nanosheets(CNS)and the composite(O-Mo S_(2)/CNS)is employed to modify the separator of Li-S battery.It gives the battery an initial discharge capacity of 1537 m Ah g-1at 0.2 C,and the battery retains a discharge capacity of 545 m Ah g-1after ultra-long 2000 cycles at 1 C,corresponding to a very small cyclic decay rate of 0.0237%.Even under a raising sulfur loading of 8.2 mg cm^(-2),the Li-S battery also delivers a high discharge capacity(554 m Ah g^(-1))with outstanding cycle stability(84.6%capacity retention)after 100 cycles at 0.5 C.Our work provides a novel,facile approach to fabricate highly catalytically active oxygen-doped Mo S_(2)for advanced Li-S batteries. 展开更多
关键词 Competing reduction one-pot Oxygen-doped MoS_(2) Unlocked basal plane Li-S batteries
下载PDF
Enhancing oxygen reduction reaction of Pt-Co/C nanocatalysts via synergetic effect between Pt and Co prepared by one-pot synthesis 被引量:3
3
作者 Yun-Feng Wu Ji-Wei Ma Yun-Hui Huang 《Rare Metals》 SCIE EI CAS CSCD 2023年第1期146-154,共9页
Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)posses... Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)possessing excellent electronic and geometric properties have received increasing interests as highly active electrocatalysts.Herein,we report a series of Pt_(x)Co/C(x=1,2,3)catalysts by a facile one-pot soft-chemistry method.In the acidic conditions,the mass activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 0.526,0.462 and 0.441 A·mgPt^(-1),which are 2.60,2.31 and 2.22 times higher than that of Pt/C(0.200 A·mgPt^(-1)),respectively.The specific activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 706.59,679.41 and 801.83μA·cm^(-2),which are accordingly 2.89,2.76 and 3.28 times higher than that of Pt/C(244.75μA·cm^(-2)).Notably,Pt_(3)Co/C shows a remarkable durability.After 5000 cycles of the accelerated durability testing,the mass activity and specific activity of Pt_(3)Co/C catalyst are 2.47 and 3.80 times higher than that of the commercial Pt/C,respectively.The improved ORR activity and durability can be ascribed to the synergistic interaction between Pt and Co. 展开更多
关键词 Proton exchange membrane fuel cells(PEMFCs) Pt_(x)Co/C catalysts Synergetic effect Oxygen reduction reaction(ORR) one-pot synthesis
原文传递
Facile synthesis of hydrochar-supported catalysts from glucose and its catalytic activity towards the production of functional amines
4
作者 Xiuzheng Zhuang Jianguo Liu Longlong Ma 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1358-1370,共13页
Since the utilization of abundant biomass to develop advanced materials has become an utmost priority in recent years,we developed two sustainable routes(i.e.,the impregnation method and the one-pot synthesis)to prepa... Since the utilization of abundant biomass to develop advanced materials has become an utmost priority in recent years,we developed two sustainable routes(i.e.,the impregnation method and the one-pot synthesis)to prepare the hydrochar-supported catalysts and tested its catalytic performance on the reductive amination.Several techniques,such as TEM,XRD and XPS,were adopted to characterize the structural and catalytic features of samples.Results indicated that the impregnation method favors the formation of outer-sphere surface complexes with porous structure as well as well-distributed metallic nanoparticles,while the one-pot synthesis tends to form the inner-sphere surface complexes with relatively smooth appearance and amorphous metals.This difference explains the better activity of catalysts prepared by the impregnation method which can selectively convert benzaldehyde to benzylamine with an excellent yield of 93.7%under the optimal reaction conditions;in contrast,the catalyst prepared by the one-pot synthesis only exhibits a low selectivity near to zero.Furthermore,the gram-scale test catalyzed by the same catalysts exhibits a similar yield of benzylamine in comparison to its smaller scale,which is comparable to the previously reported heterogeneous noble-based catalysts.More surprisingly,the prepared catalysts can be expediently recycled by a magnetic bar and remain the satisfying catalytic activity after reusing up to five times.In conclusion,these developed catalysts enable the synthesis of functional amines with excellent selectivity and carbon balance,proving cost-effective and sustainable access to the wide application of reductive amination. 展开更多
关键词 Impregnation method one-pot synthesis Hydrochar-supported catalyst reductive amination
下载PDF
Molten salt as ultrastrong polar solvent enables the most straightforward pyrolysis towards highly efficient and stable single-atom electrocatalyst 被引量:1
5
作者 Nannan Li Wei Liu +7 位作者 Chao Zhu Ce Hao Jingya Guo Hongyu Jing Jinwen Hu Cuncun Xin Danyang Wu Yantao Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期519-527,共9页
Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as w... Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as well as the high cost and complicated preparations of precursors.In this report,molten salts are demonstrated to be marvellous medium for preparation of C-SACs by pyrolysis of small molecular precursors(ionic liquid).The ultrastrong polarity on one hand establishes robust interaction with precursor and enables better carbonization,resulting in largely enhanced yield.On the other hand,the aggregation of metal atoms is effectively refrained while no nanoparticle or cluster is formed.By this strategy,a C-SAC with atomically dispersed Fe-N_(4) sites and a high specific area over 2000 m^(2) g^(-1) is obtained,which illustrates high ORR activity in both acid and alkaline media.Moreover,this SAC exhibits superior methanol tolerance and stability after acid soaking at 85℃ for 48 h.It is believed that the molten-salts-assisted pyrolysis can be developed into a routine strategy as it not only can largely simply the synthesis of C-SACs,but also can be extended to prepare other types of SACs. 展开更多
关键词 Ultrastrong polar solvent Molten salts one-pot pyrolysis Carbon-supported single atom catalysts Oxygen reduction reaction
下载PDF
One-pot synthesis of Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts for NH_(3)-SCR reaction with SO_(2) resistance 被引量:1
6
作者 Yuanyuan Ma Zhifang Li +1 位作者 Nan Zhao Yanlong Teng 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第10期1217-1223,I0002,共8页
SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measur... SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measured for selective catalytic reduction(SCR) of NO with NH3.The synthesized Cu-Ce co-doped products switch from cubic SAPO-34,to flower-like aggregated SAPO-5/34,hybrid crystal SAPO-5/34,and finally to spherical aggregated SAPO-34 with the increase of α-cellulose amount.The Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts with 0.75 mol ratios of C/P(Cu-Ce/SP-0.75)exhibit excellent NH_(3)-SCR activity with higher than 90% NOx conversion in the temperature range of 180-450℃,at WHSV of 20000 mL/(g·h).Furthermore,the catalyst displays outstanding sulfur resistance and NOX conversion maintains above 90% at 200-450℃ after adding 100 ppm of SO_(2).The characteristic results suggest that the high deNOX performance of Cu-Ce/SP-0.75 is due to the enhanced accessibility,abundant activity species,excellent redox property and high adsorptive and activated capacity for NH_(3). 展开更多
关键词 SAPO-5/34 catalysts Selective catalytic reduction Cu-Ce co-modified one-pot synthesis Good resistance to SO_(2) Rare earths
原文传递
The one-pot process for the preparation of N-monoalkyl aromatic amines from nitroarene derivatives
7
作者 JIA JianHong SHENG WeiJian +3 位作者 HAN Liang LI YuJin GAO JianRong TU JunFei 《Science China Chemistry》 SCIE EI CAS 2009年第12期2171-2175,共5页
A series of N-monoalkyl aromatic amines are synthesized in high yields from corresponding nitroarene derivatives,aldehydes,and ammonium formate in the presence of Pd/C as a catalyst through one-pot operations at room ... A series of N-monoalkyl aromatic amines are synthesized in high yields from corresponding nitroarene derivatives,aldehydes,and ammonium formate in the presence of Pd/C as a catalyst through one-pot operations at room temperature. Both the conversion and selectivity of the process are above 80%. Optimum reaction conditions are investigated,and it is found that the optimum molar ratio of nitroarene derivatives to ammonium formate and the optimum weight ratio of nitroarene derivatives to Pd/C are 1/4 and 1/0.10,respectively. These experiments provide a novel access for N-monoalkyl aromatic amines with advantages of simplicity,high selectivity,and environmental benignity. 展开更多
关键词 N-monoalkylation one-pot process ammonium FORMATE ALDEHYDE PD/C reduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部