In this paper, we establish the weighted <span style="white-space:nowrap;"><em>L</em><sup><em>p</em></sup></span> <span style="white-space:nowrap;"...In this paper, we establish the weighted <span style="white-space:nowrap;"><em>L</em><sup><em>p</em></sup></span> <span style="white-space:nowrap;">(1 < <em>p</em> < ∞)</span> boundedness of variation operator for the commutators generated by one-sided Calderón-Zygmund singular integrals with Lipschitz functions.展开更多
In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P...In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n).展开更多
The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfie...The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfies certain cancellation condition. When kernel Ω(x' )∈Llog+L(S^n-1 ), the Fp^a,q(R^n) boundedness of the above operator is obtained. Meanwhile ,when Ω(x) satisfies L^1- Dini condition,the above operator T is bounded on F1^0,1 (R^n).展开更多
The commutators of oscillatory singular integral operators with homogeneous kernel $\frac{{\Omega (x)}}{{\left| x \right|^n }}$ are studied, where Ω is homogeneous of degree zero, has mean value zero on the unit sphe...The commutators of oscillatory singular integral operators with homogeneous kernel $\frac{{\Omega (x)}}{{\left| x \right|^n }}$ are studied, where Ω is homogeneous of degree zero, has mean value zero on the unit sphere. It is proved that Ω∈L (logL)K+1(Sn-1) is a sufficient condition under which the k-th order commutator is bounded on L2(Rn).展开更多
This is a short survey on osicllatory integral operators. We summarize the main development and managing techniques of the field, and give some open problems and main references in the end.
Let n≥2. In this paper, the author establishes the L2 (Rx)-boundedness of some oscillatory singular integrals with variable rough kernels by means of some estimates on hyper geometric functions and confluent hyper ge...Let n≥2. In this paper, the author establishes the L2 (Rx)-boundedness of some oscillatory singular integrals with variable rough kernels by means of some estimates on hyper geometric functions and confluent hyper geometric funtions.展开更多
The authors considered non-convolution type oscillatory singular integral operators with real-analytic phases. A uniform boundedness from HKp to Hp of such operators is established. The result is false for general C p...The authors considered non-convolution type oscillatory singular integral operators with real-analytic phases. A uniform boundedness from HKp to Hp of such operators is established. The result is false for general C phases.展开更多
In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under...In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results.展开更多
In this paper, we want to improve our previous results. We prove that some oscillatory strong singular integral operators of non-convolution type with non-polynomial phases are bounded from Herz-type Hardy spaces to H...In this paper, we want to improve our previous results. We prove that some oscillatory strong singular integral operators of non-convolution type with non-polynomial phases are bounded from Herz-type Hardy spaces to Herz spaces and from Hardy spaces associated with the Beurling algebras to the Beurling algebras in higher dimensions.展开更多
Here we consider the following strongly singular integral TΩ,γ,α,βf(x,t)=∫R^ne^i|y|^-βΩ(y/|y|)/|y|^n+af(x-y,t-γ(|y|))dy, where Ω∈L^p(S^n-1),p〉1,n〉1,α〉0 and γis convex on (0,∞).We p...Here we consider the following strongly singular integral TΩ,γ,α,βf(x,t)=∫R^ne^i|y|^-βΩ(y/|y|)/|y|^n+af(x-y,t-γ(|y|))dy, where Ω∈L^p(S^n-1),p〉1,n〉1,α〉0 and γis convex on (0,∞).We prove that there exists A(p,n) 〉 0 such that if β 〉 A(p,n) (1 +α), then TΩ,γ,α,β is bounded from L^2 (R^n+1) to itself and the constant is independent of γ Furthermore,when Ω∈ C^∞ (S^n-1 ), we will show that TΩ,γ,α,β is bounded from L^2 (R^n+l) to itself only if β〉 2α and the constant is independent of γ.展开更多
The theta (t)-type oscillatory singular integral operators has been discussed. With the non-negative locally integrable weighted function, the weighted norm inequality of theta ( t) -type oscillatory singular integral...The theta (t)-type oscillatory singular integral operators has been discussed. With the non-negative locally integrable weighted function, the weighted norm inequality of theta ( t) -type oscillatory singular integral operators is proved, and the weighted function has replaced by action of Hardy-Littlewood maximal operators several times.展开更多
In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted wea...In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted weak Hardy space WH;(R;) to the weighted weak Lebesgue space WL;(R;) for ω∈A;(R;).展开更多
In this paper, the author studies a class of non-standard commutators with higher order remainders for oscillatory singular integral operators with phases more general than polynomials. For 1 〈 p 〈 ∞, the L^p-bound...In this paper, the author studies a class of non-standard commutators with higher order remainders for oscillatory singular integral operators with phases more general than polynomials. For 1 〈 p 〈 ∞, the L^p-boundedness of such operators are obtained provided that their kernels belong to the spaces L^q(s^n-1) for some q 〉 1.展开更多
In this paper, we study a kind of oscillatory singular integral operator T with Calderon-Zygmund kernel, which had been studied by Ricci and Stein in [6], and extend their result. We get that T is bounded on L^P(R^...In this paper, we study a kind of oscillatory singular integral operator T with Calderon-Zygmund kernel, which had been studied by Ricci and Stein in [6], and extend their result. We get that T is bounded on L^P(R^n)(1〈p〈∞) when -1〈u〈 αd(1/2-|1/p-1/2).展开更多
In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications o...In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.展开更多
文摘In this paper, we establish the weighted <span style="white-space:nowrap;"><em>L</em><sup><em>p</em></sup></span> <span style="white-space:nowrap;">(1 < <em>p</em> < ∞)</span> boundedness of variation operator for the commutators generated by one-sided Calderón-Zygmund singular integrals with Lipschitz functions.
文摘In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n).
文摘The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfies certain cancellation condition. When kernel Ω(x' )∈Llog+L(S^n-1 ), the Fp^a,q(R^n) boundedness of the above operator is obtained. Meanwhile ,when Ω(x) satisfies L^1- Dini condition,the above operator T is bounded on F1^0,1 (R^n).
文摘The commutators of oscillatory singular integral operators with homogeneous kernel $\frac{{\Omega (x)}}{{\left| x \right|^n }}$ are studied, where Ω is homogeneous of degree zero, has mean value zero on the unit sphere. It is proved that Ω∈L (logL)K+1(Sn-1) is a sufficient condition under which the k-th order commutator is bounded on L2(Rn).
文摘This is a short survey on osicllatory integral operators. We summarize the main development and managing techniques of the field, and give some open problems and main references in the end.
基金Dachun Yang was supported by the Croucher Foundation Chinese Visitorships 1999-2000 of Hong Kong and me NNSF(19131080)of China
文摘Let n≥2. In this paper, the author establishes the L2 (Rx)-boundedness of some oscillatory singular integrals with variable rough kernels by means of some estimates on hyper geometric functions and confluent hyper geometric funtions.
文摘The authors considered non-convolution type oscillatory singular integral operators with real-analytic phases. A uniform boundedness from HKp to Hp of such operators is established. The result is false for general C phases.
基金Supported by the National Natural Science Foundation of China (11026104, 11201103, 11226108)
文摘In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results.
基金Xu Jingshi is partially supported by the NSF of Hunan,China(01JJY3003)A project supported by Scientific Research Fund of Hunan Provincial Education Department(02C067)
文摘In this paper, we want to improve our previous results. We prove that some oscillatory strong singular integral operators of non-convolution type with non-polynomial phases are bounded from Herz-type Hardy spaces to Herz spaces and from Hardy spaces associated with the Beurling algebras to the Beurling algebras in higher dimensions.
基金supported by NSFC(Nos.11471288,11371136 and 11671363)NSFZJ(LY14A010015)China Scholarship Council
文摘Here we consider the following strongly singular integral TΩ,γ,α,βf(x,t)=∫R^ne^i|y|^-βΩ(y/|y|)/|y|^n+af(x-y,t-γ(|y|))dy, where Ω∈L^p(S^n-1),p〉1,n〉1,α〉0 and γis convex on (0,∞).We prove that there exists A(p,n) 〉 0 such that if β 〉 A(p,n) (1 +α), then TΩ,γ,α,β is bounded from L^2 (R^n+1) to itself and the constant is independent of γ Furthermore,when Ω∈ C^∞ (S^n-1 ), we will show that TΩ,γ,α,β is bounded from L^2 (R^n+l) to itself only if β〉 2α and the constant is independent of γ.
基金Foundation item:the Education Commission of Shandong Province(J98P51)
文摘The theta (t)-type oscillatory singular integral operators has been discussed. With the non-negative locally integrable weighted function, the weighted norm inequality of theta ( t) -type oscillatory singular integral operators is proved, and the weighted function has replaced by action of Hardy-Littlewood maximal operators several times.
基金supported by the National Natural Science Foundation of China(Grant No.11501233)China Postdoctoral Science Foundation(No.2015M572327)+2 种基金Humanities and Social Sciences Program of the Ministry of Education(No.15YJC630053)Natural Science Foundation of Anhui Province(No.1408085MA08 and No.1508085SMA204)Natural Science Foundation of the Education Department of Anhui Province(No.KJ2015A335 and No.KJ2015A270)
文摘In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted weak Hardy space WH;(R;) to the weighted weak Lebesgue space WL;(R;) for ω∈A;(R;).
基金Supported by the National Natural Science Foundation of China (Grant No. 10771054)the Natural Science Foundation of Fujian Province of China (Grant No. Z0511004)
文摘In this paper, the author studies a class of non-standard commutators with higher order remainders for oscillatory singular integral operators with phases more general than polynomials. For 1 〈 p 〈 ∞, the L^p-boundedness of such operators are obtained provided that their kernels belong to the spaces L^q(s^n-1) for some q 〉 1.
文摘In this paper, we study a kind of oscillatory singular integral operator T with Calderon-Zygmund kernel, which had been studied by Ricci and Stein in [6], and extend their result. We get that T is bounded on L^P(R^n)(1〈p〈∞) when -1〈u〈 αd(1/2-|1/p-1/2).
基金Supported by the National Natural Science Foundation of China(10931001, 10871173)
文摘In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.