期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms
1
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
下载PDF
改进SAF-FCOS的雷视融合目标检测算法 被引量:1
2
作者 陈正浩 邓月明 +1 位作者 谢竞 何鑫 《计算机工程与应用》 CSCD 北大核心 2024年第14期209-218,共10页
针对雷视特征融合目标检测网络难以有效利用雷达点云信息和图像特征,在恶劣天气环境下,仍然容易出现误检、漏检的问题,提出了一种改进SAF-FCOS雷视融合目标检测网络。对SAF-FCOS的骨干网络结构进行改进,在C3、C4特征层进行雷达特征信息... 针对雷视特征融合目标检测网络难以有效利用雷达点云信息和图像特征,在恶劣天气环境下,仍然容易出现误检、漏检的问题,提出了一种改进SAF-FCOS雷视融合目标检测网络。对SAF-FCOS的骨干网络结构进行改进,在C3、C4特征层进行雷达特征信息的多尺度融合,使网络模型更充分地利用雷达信息;在检测层前使用改进的LNblock模块——LNblcok_GAM,能够以较低的计算成本提取图像特征的同时提高网络的检测性能;在回归损失方面,使用基于EIOU与GIOU改进的CEIOU替换原网络中的GIOU,提高了网络的检测精度,提升了模型的鲁棒性。在NuScenes数据集上,改进网络的mAP_(0.5:0.95)达到了70.7%,AP_(50)达到了90.5%,比原网络SAF-FCOS分别提高了1.7个百分点和0.9个百分点,漏检、误检的情况得到了有效改善,同时,该改进网络的总体检测效果要优于其他经典的纯视觉目标检测算法。 展开更多
关键词 目标检测 雷视融合 SAF-fcos网络 多尺度融合 LNblock_GAM
下载PDF
Catenary dropper fault identification based on improved FCOS algorithm
3
作者 GU Guimei WEN Bokang +1 位作者 JIA Yaohua ZHANG Cunjun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期571-578,共8页
The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of t... The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately. 展开更多
关键词 catenary dropper fully convolutional one-stage(fcos)network defect identification generalized intersection over union(GIoU) focal loss
下载PDF
基于改进FCOS网络的自然环境下苹果检测 被引量:9
4
作者 龙燕 李南南 +2 位作者 高研 何梦菲 宋怀波 《农业工程学报》 EI CAS CSCD 北大核心 2021年第12期307-313,共7页
为了快速识别和准确定位自然环境下苹果果实目标,提出了一种改进全卷积单阶段无锚框(Fully Convolutional One-Stage object detection,FCOS)网络的苹果目标检测方法。该网络在传统FCOS网络基础上,使用模型体积较小的darknet19作为骨干... 为了快速识别和准确定位自然环境下苹果果实目标,提出了一种改进全卷积单阶段无锚框(Fully Convolutional One-Stage object detection,FCOS)网络的苹果目标检测方法。该网络在传统FCOS网络基础上,使用模型体积较小的darknet19作为骨干网络,将center-ness分支引入到回归分支上。同时提出了一种融合联合交并比(GIoU)和焦点损失(Focal loss)的损失函数,在提高检测性能的同时降低正负样本比例失衡带来的误差。首先,对田间采集的自然环境下的苹果图像进行数据增强和标注,使用darknet骨干网络提取图像特征,然后将不同尺度待检测目标分配到不同的网络层中进行预测,最后进行分类和回归,实现苹果目标的检测。该研究在计算机工作站上对不同光照条件、不同密集程度和不同遮挡程度的苹果果实进行检测试验,并与传统FCOS网络的检测结果进行对比分析。基于改进FCOS网络的检测准确率为96.0%,检测精度均值(mean Average Precision,mAP)为96.3%。试验结果表明,改进FCOS网络比传统FCOS网络的苹果检测方法在检测准确度上有提高,具有较强的鲁棒性。 展开更多
关键词 目标识别 算法 苹果检测 GIoU 焦点损失 fcos网络
下载PDF
VoVNet-FCOS道路行人目标检测算法研究 被引量:8
5
作者 刘丹 汪慧兰 +1 位作者 曾浩文 王桂丽 《国外电子测量技术》 北大核心 2021年第11期64-71,共8页
针对行人目标特殊性和复杂性而导致的目前行人检测算法在速度和精度上不高的问题,提出一种改进的FCOS行人检测算法。首先,在网络基础结构上,为了提高算法精度,以高效型网络VoVNet代替ResNet进行特征的提取,同时在VoV-Net上增加了输入到... 针对行人目标特殊性和复杂性而导致的目前行人检测算法在速度和精度上不高的问题,提出一种改进的FCOS行人检测算法。首先,在网络基础结构上,为了提高算法精度,以高效型网络VoVNet代替ResNet进行特征的提取,同时在VoV-Net上增加了输入到输出的残差连接,从而增强深层特征表达;其次在网络最后的特征层上添加了eSE注意力机制,来提高网络的特征提取能力;最后,在损失函数上,引用GIOU Loss作为回归分支损失函数来解决IOU Loss无法反映预测框与真实框重合程度问题。实验表明,与现有算法相比,改进后的FCOS算法mAP提高了9.5%,速度上也满足实时性要求。 展开更多
关键词 行人检测 卷积神经网络 fcos 高效型网络 损失函数
下载PDF
改进FCOS的行人检测算法 被引量:3
6
作者 刘丹 汪慧兰 +1 位作者 曾浩文 王桂丽 《计算机工程与设计》 北大核心 2022年第11期3264-3270,共7页
为解决行人目标特殊性和复杂性导致的检测速度和精度不高问题,提出改进的FCOS检测算法。采用轻量型网络作为FCOS的主干网络,提高检测速度;运用同步批归一化替代批归一化方法进行网络模型训练;在原有特征层基础上增加C_(2)层进行特征融合... 为解决行人目标特殊性和复杂性导致的检测速度和精度不高问题,提出改进的FCOS检测算法。采用轻量型网络作为FCOS的主干网络,提高检测速度;运用同步批归一化替代批归一化方法进行网络模型训练;在原有特征层基础上增加C_(2)层进行特征融合,提高精度。实验结果表明,改进算法在Caltech数据集上mAP为88.9%,对小尺度行人检测效果增强,检测速度提高了85.3%,在具有鲁棒性的同时也满足行人检测实时性要求。 展开更多
关键词 行人检测 全卷积单阶段 深度学习 轻量型网络 同步批归一化
下载PDF
优化FCOS网络复杂果园环境下绿色苹果检测模型 被引量:4
7
作者 张中华 贾伟宽 +3 位作者 邵文静 侯素娟 Ji Ze 郑元杰 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第2期647-653,共7页
目标果实的精准识别是实现果园测产和机器自动采摘的基本保障。然而受复杂的非结构化果园环境、绿色苹果与枝叶背景颜色接近等因素的影响,制约着可见光谱范围下目标果实的检测精度,给机器视觉识别带来极大挑战。针对复杂果园环境下的不... 目标果实的精准识别是实现果园测产和机器自动采摘的基本保障。然而受复杂的非结构化果园环境、绿色苹果与枝叶背景颜色接近等因素的影响,制约着可见光谱范围下目标果实的检测精度,给机器视觉识别带来极大挑战。针对复杂果园环境下的不同光照环境和果实姿态,提出一种优化的一阶全卷积(FCOS)神经网络绿色苹果识别模型。首先,新模型在FCOS的基础上融合了卷积神经网络(CNN)的特征提取能力,消除了对锚框的依赖,以单阶段、全卷积、无锚框的方式预测果实置信度与边框偏移,在保证检测精度的前提下提升了模型的识别速度;其次,增加了自底向上的特征融合架构,为模型提供了更加准确的定位信息,进一步优化绿色苹果的检测效果;最后根据FCOS末端三个输出分支设计整体损失函数,完成模型训练。为尽可能模拟真实果园环境,分别采集不同光照环境、光照角度、遮挡类型、摄像距离的绿色苹果图像,制作数据集并用以模型训练。挑选最优训练模型在包含不同场景的验证集上进行评估,结果为:在检测效果方面,平均精度为85.6%,与目前最先进的检测模型Faster R-CNN,SSD,RetinaNet,FSAF相比,分别高出0.9,10.5,2.5,1.9个百分点;在模型设计方面,FCOS的模型参数量与整个检测流程所需的计算量分别为32.0 M和47.5 GFLOPs(10亿次浮点运算),与Faster R-CNN相比,分别降低了9.5 M和12.5 GFLOPs。对比表明,在可见光谱范围下,对复杂果园环境中绿色苹果,提出的新模型具有更高的检测精度和识别效率,为苹果果园测产和自动化采摘提供理论和技术支撑;也可为其他果蔬的球形绿色目标果实识别提供借鉴。 展开更多
关键词 fcos网络 绿色果实 目标检测
下载PDF
改进FCOS网络的海洋鱼类目标检测 被引量:5
8
作者 张琳 葛艳 +1 位作者 杜军威 刘玉鹏 《计算机系统应用》 2023年第3期309-315,共7页
鱼类的探索与保护是保持海洋生态环境平衡的重要一环,然而水下环境复杂,受光照、水质以及遮挡物的影响,造成水下捕捉鱼类图像成像模糊识别困难,制约水下鱼类目标的检测速度以及检测精度.针对以上问题,提出了一种基于改进FCOS的海洋鱼类... 鱼类的探索与保护是保持海洋生态环境平衡的重要一环,然而水下环境复杂,受光照、水质以及遮挡物的影响,造成水下捕捉鱼类图像成像模糊识别困难,制约水下鱼类目标的检测速度以及检测精度.针对以上问题,提出了一种基于改进FCOS的海洋鱼类识别模型.首先,该模型以一阶段算法FCOS为基本架构,使用轻量级的Mobile Netv2作为骨干网络,既保证检测准确度,还可以提高检测;其次,引入自适应空间特征融合(adaptively spatial feature fusion, ASFF)模块,避免尺度特征的不一致性,提高检测精度;最后,将center-ness分支引入到回归分支中,引入联合交并比损失(GIoU loss, generalized intersection over union)提高检测的性能.实验数据集使用公开数据集Fish4Knowledge (F4K)中的图片以及视频帧截取图片,选取训练性能最优模型进行评估.结果表明,提出的新模型在以上数据集的平均检测精度分别为99.79%、99.88%,相较于原模型以及其他检测模型本文提出模型的检测精度与识别速度更高,可为海洋鱼类识别提供参考依据. 展开更多
关键词 鱼类识别 目标检测 fcos网络 特征融合 MobileNetv2 深度学习
下载PDF
基于FCOS神经网络的制动主缸内槽缺陷检测方法 被引量:5
9
作者 王芷薇 郭斌 +2 位作者 胡晓峰 罗哉 段林茂 《计量学报》 CSCD 北大核心 2021年第9期1225-1231,共7页
针对主缸内槽缺陷检测存在干扰因素复杂、检测精度低等难点,提出了一种基于全卷积单阶段神经网络(FCOS)的主缸内槽缺陷检测算法。利用特征融合金字塔网络进行特征提取并逐像素预测,得到缺陷种类,实现凹槽缺陷的自动检测。实验结果表明,F... 针对主缸内槽缺陷检测存在干扰因素复杂、检测精度低等难点,提出了一种基于全卷积单阶段神经网络(FCOS)的主缸内槽缺陷检测算法。利用特征融合金字塔网络进行特征提取并逐像素预测,得到缺陷种类,实现凹槽缺陷的自动检测。实验结果表明,FCOS网络对制动主缸内槽砂眼、划痕、振刀纹缺陷检测的平均精度均值分别为85.2%、87.5%、90.1%,精确度分别为0.98、0.89、0.95。实验结果与Mask R-CNN网络和Faster R-CNN网络的实验结果进行对比,FCOS网络具有更高的准确率,学习时长大幅度缩短,且满足实时检测要求。 展开更多
关键词 计量学 内槽缺陷检测 制动主缸 全卷积网络 fcos 特征融合金字塔网络
下载PDF
改进FCOS算法正样本选择的交通标志检测
10
作者 崔港涛 马社祥 《计算机工程与设计》 北大核心 2023年第10期3153-3159,共7页
针对交通标志独特的形状特点,提出一种改进的anchor-free卷积神经网络检测算法FCOS(fully convolutional one-stage object detection)。由于原算法在训练过程中直接将真实框内的位置点标记为正,会产生大量标签噪声,在FCOS网络结构的基... 针对交通标志独特的形状特点,提出一种改进的anchor-free卷积神经网络检测算法FCOS(fully convolutional one-stage object detection)。由于原算法在训练过程中直接将真实框内的位置点标记为正,会产生大量标签噪声,在FCOS网络结构的基础上融合交通标志的形状特征,减少没有辩证能力的噪声标签,设计新的正样本选择策略。实验结果表明,改进后FCOS算法在处理后的TT100K数据集上的检测mAP(mean average precision)在不增加计算量的情况下提升到83.2%,检测性能高于FCOS。 展开更多
关键词 交通标志检测 fcos 深度学习 正标签 回归位置 卷积神经网络 噪声
下载PDF
改进的FCOS煤矿井下行人检测算法 被引量:3
11
作者 延晓宇 董立红 +1 位作者 厍向阳 符立梅 《矿业研究与开发》 CAS 北大核心 2022年第4期160-165,共6页
针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金... 针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金字塔结构改进为自上而下和自下而上的路径增强网络,同时利用由两组深度可分离卷积组成的轻量化检测头替换原始FCOS网络的检测头。在试验训练过程中,通过对井下行人检测数据进行尺度和颜色等数据增强来提升模型的泛化能力与鲁棒性。试验结果显示,改进的FCOS可以更好地实现检测精度与速度之间的平衡,该算法在基本不损失精度的情况下,平均精度均值(mean Average Precision)达51.9%,检测速度可以达到100帧/s。 展开更多
关键词 井下行人检测 fcos目标检测算法 ShuffleNet V2 路径增强网络 数据增强
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部