Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of t...The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately.展开更多
针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金...针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金字塔结构改进为自上而下和自下而上的路径增强网络,同时利用由两组深度可分离卷积组成的轻量化检测头替换原始FCOS网络的检测头。在试验训练过程中,通过对井下行人检测数据进行尺度和颜色等数据增强来提升模型的泛化能力与鲁棒性。试验结果显示,改进的FCOS可以更好地实现检测精度与速度之间的平衡,该算法在基本不损失精度的情况下,平均精度均值(mean Average Precision)达51.9%,检测速度可以达到100帧/s。展开更多
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
基金supported by Natural Science Foundation of Gansu Province(No.20JR10RA216)。
文摘The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately.
文摘针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金字塔结构改进为自上而下和自下而上的路径增强网络,同时利用由两组深度可分离卷积组成的轻量化检测头替换原始FCOS网络的检测头。在试验训练过程中,通过对井下行人检测数据进行尺度和颜色等数据增强来提升模型的泛化能力与鲁棒性。试验结果显示,改进的FCOS可以更好地实现检测精度与速度之间的平衡,该算法在基本不损失精度的情况下,平均精度均值(mean Average Precision)达51.9%,检测速度可以达到100帧/s。