Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,a...Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages.展开更多
Efficient and durable oxygen evolution reaction(OER)requires the electrocatalyst to bear abundant active sites,optimized electronic structure as well as robust component and mechanical stability.Herein,a bimetallic la...Efficient and durable oxygen evolution reaction(OER)requires the electrocatalyst to bear abundant active sites,optimized electronic structure as well as robust component and mechanical stability.Herein,a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La_(2)O_(2)S prototype is fabricated as a binder-free precatalyst for alkaline OER.The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La,Ni,O,and S species during OER,which assures the adsorption and stabilization of the oxyanion SO_(4)^(2-)onto the surface of the deeply reconstructed porous heterostructure composed of confining Ni OOH nanodomains by La(OH)_3 barrier.Such coupling,confinement,porosity and immobilization enable notable improvement in active site accessibility,phase stability,mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates.The optimized electrocatalyst delivers exceptional alkaline OER activity and durability,outperforming most of the Ni-based benchmark OER electrocatalysts.展开更多
BACKGROUND Current research lacks a model of knee extension contracture in rats.AIM To elucidate the formation process of knee extension contracture.METHODS We developed a rat model using an aluminum external fixator....BACKGROUND Current research lacks a model of knee extension contracture in rats.AIM To elucidate the formation process of knee extension contracture.METHODS We developed a rat model using an aluminum external fixator.Sixty male Sprague-Dawley rats with mature bones were divided into the control group(n=6)and groups that had the left knee immobilized with an aluminum external fixator for 1,2,and 3 d,and 1,2,3,4,6,and 8 wk(n=6 in each group).The passive extension range of motion,histology,and expression of fibrosis-related proteins were compared between the control group and the immobilization groups.RESULTS Myogenic contracture progressed very quickly during the initial 2 wk of immobilization.After 2 wk,the contracture gradually changed from myogenic to arthrogenic.The arthrogenic contracture progressed slowly during the 1^(st) week,rapidly progressed until the 3^(rd) week,and then showed a steady progression until the 4^(rd) week.Histological analyses confirmed that the anterior joint capsule of the extended fixed knee became increasingly thicker over time.Correspondingly,the level of transforming growth factor beta 1(TGF-β1)and phosphorylated mothers against decapentaplegic homolog 2(p-Smad2)in the anterior joint capsule also increased with the immobilization time.Over time,the cross-sectional area of muscle fibers gradually decreased,while the amount of intermuscular collagen and TGF-β1,p-Smad2,and p-Smad3 was increased.Unexpectedly,the amount of intermuscular collagen and TGF-β1,p-Smad2,and p-Smad3 was decreased during the late stage of immobilization(6-8 wk).The myogenic contracture was stabilized after 2 wk of immobilization,whereas the arthrogenic contracture was stabilized after 3 wk of immobilization and completely stable in 4 wk.CONCLUSION This rat model may be a useful tool to study the etiology of joint contracture and establish therapeutic approaches.展开更多
The aim of this work was to inhibit biofilm formation by taking advantages of bacterial surface display technology in combination with cell membrane chromatography.A recombinant protein INPAidH was constructed by fusi...The aim of this work was to inhibit biofilm formation by taking advantages of bacterial surface display technology in combination with cell membrane chromatography.A recombinant protein INPAidH was constructed by fusing a quorum signal hydrolase AidH to the C-terminus of the ice nucleation protein(INP).Expression of INP-AidH was achieved on E.coli cell surface at an expression level of 30%of total membrane proteins.Activity of INP-AidH on cell membranes was confirmed in degrading the quorum signal C6-HSL as well as inhibiting bacterial biofilm.Immobilization of INP-AidH anchored cell membranes on silica gel particles was facilitated by taking advantages of cell membrane chromatography.The functionalized silica gel particles also exhibit activities in degrading C6-HSL and inhibiting bacterial biofilm.This article presents a new approach to prevent biofilm formation of silica-based materials.展开更多
To improve the efficiency and stability of chloride immobilization of portland cement paste,hydrated calcium aluminate cement(HCAC)prepared by wet grinding of CAC was added into portland cement paste as an additive.Th...To improve the efficiency and stability of chloride immobilization of portland cement paste,hydrated calcium aluminate cement(HCAC)prepared by wet grinding of CAC was added into portland cement paste as an additive.The immobilized chloride ratio(ICR)was evaluated,and the mechanism of chloride immobilization was researched by XRD,DTG,NMR,and MIP tests.The analysis results demonstrated that HCAC could improve the chloride immobilization capacity of portland cement paste.The mechanism was attributed to the following aspects:chemical binding capacity was enhanced via producing more Kuzel’s salt;physical adsorption capacity was reduced by decreasing the C-S-H gel;migration resistance was enhanced through refining the pore structure.展开更多
Oriented immobilization of enzymes helps to maintain their native structure and proper orientation for high-performance engineering to meet extensive biocatalysis demands.However,the supporting materials used for orie...Oriented immobilization of enzymes helps to maintain their native structure and proper orientation for high-performance engineering to meet extensive biocatalysis demands.However,the supporting materials used for orientated immobilization are usually costly or complicated in preparation,affecting their practical applications.In this work,a facile purification and immobilization method was proposed for enzyme immobilization based on organic-inorganic hybrid calcium phosphate nanocrystal(Ca Ps)induced by Cu^(2+) modified bovine serum albumin(BSA-Cu).Then,the as-prepared hybrid calcium phosphate nanosheet,BSA-Cu@Ca Ps,was utilized for one-pot purification and immobilization of His-tagged organophosphorus hydrolase(OPH)by metal-affinity binding to the incorporated BSA.BSA-Cu@Ca PsOPH exhibited enhanced p H stability and thermal stability compared to the free enzyme.Moreover,BSA-Cu@Ca Ps-OPH could retain more than 75%and 56%of initial activity after reuse 5 and 10 times,respectively.The results demonstrated that this facile strategy was promising for the effective biodegradation of organophosphorus pesticides with the immobilized enzyme.展开更多
Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we pr...Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we propose a one-step QD protocol based on the hyperentanglement.With the help of the non-local hyperentanglement-assisted Bell state measurement(BSM),the photons only need to transmit in the quantum channel once.We prove that our one-step QD protocol is secure in theory and numerically simulate its secret message capacity under practical experimental condition.Compared with previous QD protocols,the one-step QD protocol can effectively simplify the experiment operations and reduce the message loss caused by the photon transmission loss.Meanwhile,the non-local hyperentanglement-assisted BSM has a success probability of 100%and is feasible with linear optical elements.Moreover,combined with the hyperentanglement heralded amplification and purification,our protocol is possible to realize long-distance one-step QD.展开更多
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a...This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.展开更多
BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional mul...BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the...The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads were prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4^+ -N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization.展开更多
Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 m...Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pre-treated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃. Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS.展开更多
The plant cellulose powder was activated by two different methods using 1,4-butanediol diglycidyl ether(BTDE)and 1,1′-Carbonyldiimidazole(CDI) as the chemical coupling agents.Organophosphorus hydrolase(OPH) from Flav...The plant cellulose powder was activated by two different methods using 1,4-butanediol diglycidyl ether(BTDE)and 1,1′-Carbonyldiimidazole(CDI) as the chemical coupling agents.Organophosphorus hydrolase(OPH) from Flavobacterium ATCC 27551 was immobilized on any of activated support through covalent bonding.The optimal conditions of affecting parameters on enzyme immobilization in both methods were found, and it was demonstrated that the highest activity yields of immobilized OPH onto epoxy and CDI treated cellulose were 68.32%and 73.51%, respectively.The surface treatment of cellulose via covalent coupling with BTDE and CDI agents was proved by FTIR analysis.The kinetic constants of the free and immobilized enzymes were determined, and it was showed that both immobilization techniques moderately increased the Kmvalue of the free OPH.The improvements in storage and thermal stability were investigated and depicted that the half-life of immobilized OPH over the surface of epoxy modified cellulose had a better growth compared to the free and immobilized enzymes onto CDI treated support.Also, the pH stability of the immobilized preparations was enhanced relative to the free counterpart and revealed that all enzyme samples would have the same optimum pH value for stability at 9.0.Additionally, the immobilized OPH onto epoxy and CDI activated cellulose retained about 59% and 68% of their initial activity after ten turns of batch operation, respectively.The results demonstrated the high performance of OPH enzyme in immobilized state onto an inexpensive support with the potential of industrial applications.展开更多
Aim: To examine if the seed extracts of Carica papaya, which showed anfispermatogenic/sperm immobilizationproperties in animal models, could cause human sperm immobilization in vitro. Methods: Chloroform extract, ben-...Aim: To examine if the seed extracts of Carica papaya, which showed anfispermatogenic/sperm immobilizationproperties in animal models, could cause human sperm immobilization in vitro. Methods: Chloroform extract, ben-zene chromatographic fraction of the chloroform extract, its methanol and ethyl acetate sub-fractions and the isolatedcompounds from the sub-fractions i. e., ECP 1 & 2 and MCP 1 & 2, of the seeds of Carica papaya were used at con-centrations of 0.1%, 0.5%, 1% and 2%. Sperm motility was assessed immediately after addition of extracts and ev-ery 5 minutes thereafter for 30 minutes. Results: There were dose-dependent spermicidal effects showing an instantfall in the sperm motility to less than 20% at 2% concentration. Isolated compounds ECP 1 & 2 were more effective in-ducing a motility of less than 10%. Many of the spermatozoa became vibratory on the spot. Total inhibition of motilitywas observed within 20-25 rain at all concentrations of all products. Scanning and transmission electron microscopyrevealed deleterious changes in the plasma membrane of the head and mid-piece of spermatozoa. Sperm viability testand the number of abnormal spermatozoa after completion of incubation suggested that the spermatozoa were infertile.The effects were spermicidal but not spermiostatic as revealed by the sperm revival test. Conclusion: The results re-veal spermicidal activity in vitro of the seed extracts of Carica papaya.展开更多
Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and po...Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.展开更多
The magnetic chitosan nanoparticles were prepared by reversed-phase suspension method using Span-80 as an emulsifier, glutaraldehyde as cross-linking reagent. And the nanoparticles were characterized by TEM, FT-IR and...The magnetic chitosan nanoparticles were prepared by reversed-phase suspension method using Span-80 as an emulsifier, glutaraldehyde as cross-linking reagent. And the nanoparticles were characterized by TEM, FT-IR and hysteresis loop. The results show that the nanoparticles are spherical and almost superparamagnetic. The laccase was immobilized on nanoparticles by adsorption and subsequently by cross-linking with glutaraldehyde. The immobilization conditions and charac-terizations of the immobilized laccase were investigated. The optimal immobilization conditions were as follows: 10 mL of phosphate buffer (0.1 M, pH 7.0) containing 50 mg of magnetic chitosan nanoparticles, 1.0 mg·mL-1 of laccase and 1% (v/v) glutaraldehyde, immobilization temperature of 4 ℃ and immobilization time of 4 h. The immobilized laccase exhibited an appreciable catalytic capability (480 units·g-1 support) and had good storage stability and operation stability. The Km of immobilized and free laccase for ABTS were 140.6 and 31.1 μM in phosphate buffer (0.1 M, pH 3.0) at 37 ℃, respectively. The immobilized laccase is a good candidate for the research and development of biosensors based on laccase catalysis.展开更多
Two aspects of studies were carried out: 1) synthesis of geopolymer by using fly ash and metakaolin; 2) Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions. As for the synthesis of ...Two aspects of studies were carried out: 1) synthesis of geopolymer by using fly ash and metakaolin; 2) Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions. As for the synthesis of fly ash based geopolymer, 4 different fly ash content (10%, 30%, 50%, 70%) and 3 types of curing regimes (standard curing, steam curing and autoclave curing) were investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The experimental results show that geopolymer, containing 30% fly ash and synthesized at steam curing (80 ℃ for 8 h), exhibits higher mechanical strengths. The compressive and flexural strengths of fly ash based geopolymer reach 32.2 MPa and 7.15 MPa, respectively. Additionally, Infrared (IR) and X-ray diffraction (XRD) techniques were used to characterize the microstructure of the fly ash geopolymer. IR spectra shows that the absorptive band at 1086 cm^-1 shifts to lower wave number around 1033 cm^-1, and the 6-coordinated Al transforms into 4-coordination during the syn-thesis of fly ash based geopolymer. The resulting geopolymeric products were X-ray amorphous materials. As for immobilization of heavy metals, the leaching tests were employed to investigate the immobilization behaviors of the fly ash based geopolymer synthesized under the above optimum condition. The leaching tests showed that fly ash based geopolymer can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reached 90% greater when heavy metals were incorporated in the fly ash geopolymer in the range of 0.1% to 0.3%. The Pb exhibits better immobilization efficiency than the Cu, especially in the case of large dosages of heavy metals.展开更多
<abstract>Aim: To identify possible spermicidal agents through screening a number of edible medicinal plants with antimicrobial activity. Methods: Initial screening was made on the basis of ram cauda epididymal ...<abstract>Aim: To identify possible spermicidal agents through screening a number of edible medicinal plants with antimicrobial activity. Methods: Initial screening was made on the basis of ram cauda epididymal sperm immobilization immediately after addition of extracts. The most potent extract was selected and was evaluated on both ram and human spermatozoa. To unravel its mode of action several sperm functional tests were carried out, namely viability of cells, hypo-osmotic swelling test for membrane integrity and assays of membrane-bound enzyme 5'-nucleotidase and acrosomal marker enzyme acrosin. Results: The crude aqueous extract of the bulb of Allium sativum L. showed the most promising results by instant immobilization of the ram epididymal sperm at 0.25 g/mL and human ejaculated sperm at 0.5 g/mL. Sperm immobilizing effects were irreversible and the factor of the extract responsible for immobilization was thermostable up to 90 癈. On boiling at 100 癈 for 10 minutes, this activity was markedly reduced. Moreover, this extract was able to cause aggregation of ram sperms into small clusters after 30 minutes of incubation at 37 癈. However this property was not found in human spermatozoa. More than 50 % reduction in sperm viability and hypo-osmotic swelling occurred in treated sperm as compared with the controls, indicating the possibility of plasma membrane disintegration which was further supported by the significant reduction in the activity of membrane bound 5'-nucleotidase and acrosomal acrosin. Conclusion: The crude aqueous extract of A. sativum bulb possesses spermicidal activity in vitro.展开更多
Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,Ndimethylamino ethyl methacrylate (DMAEMA). Structura...Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,Ndimethylamino ethyl methacrylate (DMAEMA). Structural and morphological changes on the membrane surface were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Results reveal that both the plasma-treating conditions and the adsorbed DMAEMA amount have remarkable effects on the immobilization degree of DMAEMA. Peroxide determination by 1,1-diphenyl-2-picrvlhydrazyl (DPPH) method verifies the exsistence of radicals induced by plasma, which activize the immobilization reaction. Pure water contact angle on the membrane surface decreased with the increase of DMAEMA immobilization degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of immobilization degrees on pure water fluxes were also measured. It is shown that pure water fluxes first increased with immobilization degree and then decreased. Finally, permeation of bovine serum albumin (BSA) and lysozyme solution were measured to evaluate the antifouling property of the DMAEMA-modified membranes, from which it is shown that both hydrophilicity and electrostatic repulsion are beneficial for membrane antifouling.展开更多
A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanica...A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.展开更多
文摘Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages.
基金supported by National MCF Energy R&D Program of China(2018YFE0306105)National Key R&D Program of China(2020YFA0406104,2020YFA0406101)+10 种基金Innovative Research Group Project of the National Natural Science Foundation of China(51821002)National Natural Science Foundation of China(52201269,51725204,21771132,51972216,52041202)Natural Science Foundation of Jiangsu Province(BK20210735)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(21KJB430043)Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 ProjectSuzhou Key Laboratory of Functional Nano&Soft MaterialsJiangsu Key Laboratory for Advanced Negative Carbon Technologiesthe funding from Alexander von Humboldt(AvH)FoundationGusu leading talent plan for scientific and technological innovation and entrepreneurship(ZXL2022487)support from the German Federal Ministry of Education and Research in the framework of the project Catlab(03EW0015A/B)。
文摘Efficient and durable oxygen evolution reaction(OER)requires the electrocatalyst to bear abundant active sites,optimized electronic structure as well as robust component and mechanical stability.Herein,a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La_(2)O_(2)S prototype is fabricated as a binder-free precatalyst for alkaline OER.The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La,Ni,O,and S species during OER,which assures the adsorption and stabilization of the oxyanion SO_(4)^(2-)onto the surface of the deeply reconstructed porous heterostructure composed of confining Ni OOH nanodomains by La(OH)_3 barrier.Such coupling,confinement,porosity and immobilization enable notable improvement in active site accessibility,phase stability,mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates.The optimized electrocatalyst delivers exceptional alkaline OER activity and durability,outperforming most of the Ni-based benchmark OER electrocatalysts.
基金Supported by Anhui Key Research and Development Program-Population Health,No.201904a07020067Anhui Provincial Health Research Project,No.AHWJ2022b063+2 种基金Clinical Medicine Discipline Construction Project of Anhui Medical University in 2022(Clinic and Preliminary Co-Construction Discipline Project),No.2022 lcxkEFY0102022 National Natural Science Foundation Incubation Plan,No.2022GMFY05Clinical Medicine Discipline Construction Project of Anhui Medical University in 2022(High-Level Personnel Training Program),No.2022 lcxkEFY04,No.2022 lcxkEFY05.
文摘BACKGROUND Current research lacks a model of knee extension contracture in rats.AIM To elucidate the formation process of knee extension contracture.METHODS We developed a rat model using an aluminum external fixator.Sixty male Sprague-Dawley rats with mature bones were divided into the control group(n=6)and groups that had the left knee immobilized with an aluminum external fixator for 1,2,and 3 d,and 1,2,3,4,6,and 8 wk(n=6 in each group).The passive extension range of motion,histology,and expression of fibrosis-related proteins were compared between the control group and the immobilization groups.RESULTS Myogenic contracture progressed very quickly during the initial 2 wk of immobilization.After 2 wk,the contracture gradually changed from myogenic to arthrogenic.The arthrogenic contracture progressed slowly during the 1^(st) week,rapidly progressed until the 3^(rd) week,and then showed a steady progression until the 4^(rd) week.Histological analyses confirmed that the anterior joint capsule of the extended fixed knee became increasingly thicker over time.Correspondingly,the level of transforming growth factor beta 1(TGF-β1)and phosphorylated mothers against decapentaplegic homolog 2(p-Smad2)in the anterior joint capsule also increased with the immobilization time.Over time,the cross-sectional area of muscle fibers gradually decreased,while the amount of intermuscular collagen and TGF-β1,p-Smad2,and p-Smad3 was increased.Unexpectedly,the amount of intermuscular collagen and TGF-β1,p-Smad2,and p-Smad3 was decreased during the late stage of immobilization(6-8 wk).The myogenic contracture was stabilized after 2 wk of immobilization,whereas the arthrogenic contracture was stabilized after 3 wk of immobilization and completely stable in 4 wk.CONCLUSION This rat model may be a useful tool to study the etiology of joint contracture and establish therapeutic approaches.
基金Funded by the National Natural Science Foundation of China(No.31771032)。
文摘The aim of this work was to inhibit biofilm formation by taking advantages of bacterial surface display technology in combination with cell membrane chromatography.A recombinant protein INPAidH was constructed by fusing a quorum signal hydrolase AidH to the C-terminus of the ice nucleation protein(INP).Expression of INP-AidH was achieved on E.coli cell surface at an expression level of 30%of total membrane proteins.Activity of INP-AidH on cell membranes was confirmed in degrading the quorum signal C6-HSL as well as inhibiting bacterial biofilm.Immobilization of INP-AidH anchored cell membranes on silica gel particles was facilitated by taking advantages of cell membrane chromatography.The functionalized silica gel particles also exhibit activities in degrading C6-HSL and inhibiting bacterial biofilm.This article presents a new approach to prevent biofilm formation of silica-based materials.
基金Funded by the National Natural Science Foundation of China(Nos.52278275 and 52202029)the Major Technical Innovation Project in Hubei Province of China(No.2021BAA060)。
文摘To improve the efficiency and stability of chloride immobilization of portland cement paste,hydrated calcium aluminate cement(HCAC)prepared by wet grinding of CAC was added into portland cement paste as an additive.The immobilized chloride ratio(ICR)was evaluated,and the mechanism of chloride immobilization was researched by XRD,DTG,NMR,and MIP tests.The analysis results demonstrated that HCAC could improve the chloride immobilization capacity of portland cement paste.The mechanism was attributed to the following aspects:chemical binding capacity was enhanced via producing more Kuzel’s salt;physical adsorption capacity was reduced by decreasing the C-S-H gel;migration resistance was enhanced through refining the pore structure.
基金supported by the National Key Research and Development Program of China(2021YFC2102801)the National Natural Science Foundation of China(21621004)。
文摘Oriented immobilization of enzymes helps to maintain their native structure and proper orientation for high-performance engineering to meet extensive biocatalysis demands.However,the supporting materials used for orientated immobilization are usually costly or complicated in preparation,affecting their practical applications.In this work,a facile purification and immobilization method was proposed for enzyme immobilization based on organic-inorganic hybrid calcium phosphate nanocrystal(Ca Ps)induced by Cu^(2+) modified bovine serum albumin(BSA-Cu).Then,the as-prepared hybrid calcium phosphate nanosheet,BSA-Cu@Ca Ps,was utilized for one-pot purification and immobilization of His-tagged organophosphorus hydrolase(OPH)by metal-affinity binding to the incorporated BSA.BSA-Cu@Ca PsOPH exhibited enhanced p H stability and thermal stability compared to the free enzyme.Moreover,BSA-Cu@Ca Ps-OPH could retain more than 75%and 56%of initial activity after reuse 5 and 10 times,respectively.The results demonstrated that this facile strategy was promising for the effective biodegradation of organophosphorus pesticides with the immobilized enzyme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175106 and 92365110).
文摘Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we propose a one-step QD protocol based on the hyperentanglement.With the help of the non-local hyperentanglement-assisted Bell state measurement(BSM),the photons only need to transmit in the quantum channel once.We prove that our one-step QD protocol is secure in theory and numerically simulate its secret message capacity under practical experimental condition.Compared with previous QD protocols,the one-step QD protocol can effectively simplify the experiment operations and reduce the message loss caused by the photon transmission loss.Meanwhile,the non-local hyperentanglement-assisted BSM has a success probability of 100%and is feasible with linear optical elements.Moreover,combined with the hyperentanglement heralded amplification and purification,our protocol is possible to realize long-distance one-step QD.
基金Funded by Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education(No.JLJZHDKF202204)。
文摘This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.
基金Supported by The Key Medical Specialty Nurturing Program of Foshan During The 14th Five-Year Plan Period,No.FSPY145205The Medical Research Project of Foshan Health Bureau,No.20230814A010024+1 种基金The Guangzhou Science and Technology Plan Project,No.202102010251the Guangdong Science and Technology Program,No.2017ZC0222.
文摘BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金Project supported by the National Natural Science Foundation of China(No.50327802,50325824,50678089).
文摘The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads were prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4^+ -N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization.
文摘Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pre-treated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃. Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS.
基金Supported by the Malek-Ashtar University of Technology(925826018,2015)
文摘The plant cellulose powder was activated by two different methods using 1,4-butanediol diglycidyl ether(BTDE)and 1,1′-Carbonyldiimidazole(CDI) as the chemical coupling agents.Organophosphorus hydrolase(OPH) from Flavobacterium ATCC 27551 was immobilized on any of activated support through covalent bonding.The optimal conditions of affecting parameters on enzyme immobilization in both methods were found, and it was demonstrated that the highest activity yields of immobilized OPH onto epoxy and CDI treated cellulose were 68.32%and 73.51%, respectively.The surface treatment of cellulose via covalent coupling with BTDE and CDI agents was proved by FTIR analysis.The kinetic constants of the free and immobilized enzymes were determined, and it was showed that both immobilization techniques moderately increased the Kmvalue of the free OPH.The improvements in storage and thermal stability were investigated and depicted that the half-life of immobilized OPH over the surface of epoxy modified cellulose had a better growth compared to the free and immobilized enzymes onto CDI treated support.Also, the pH stability of the immobilized preparations was enhanced relative to the free counterpart and revealed that all enzyme samples would have the same optimum pH value for stability at 9.0.Additionally, the immobilized OPH onto epoxy and CDI activated cellulose retained about 59% and 68% of their initial activity after ten turns of batch operation, respectively.The results demonstrated the high performance of OPH enzyme in immobilized state onto an inexpensive support with the potential of industrial applications.
文摘Aim: To examine if the seed extracts of Carica papaya, which showed anfispermatogenic/sperm immobilizationproperties in animal models, could cause human sperm immobilization in vitro. Methods: Chloroform extract, ben-zene chromatographic fraction of the chloroform extract, its methanol and ethyl acetate sub-fractions and the isolatedcompounds from the sub-fractions i. e., ECP 1 & 2 and MCP 1 & 2, of the seeds of Carica papaya were used at con-centrations of 0.1%, 0.5%, 1% and 2%. Sperm motility was assessed immediately after addition of extracts and ev-ery 5 minutes thereafter for 30 minutes. Results: There were dose-dependent spermicidal effects showing an instantfall in the sperm motility to less than 20% at 2% concentration. Isolated compounds ECP 1 & 2 were more effective in-ducing a motility of less than 10%. Many of the spermatozoa became vibratory on the spot. Total inhibition of motilitywas observed within 20-25 rain at all concentrations of all products. Scanning and transmission electron microscopyrevealed deleterious changes in the plasma membrane of the head and mid-piece of spermatozoa. Sperm viability testand the number of abnormal spermatozoa after completion of incubation suggested that the spermatozoa were infertile.The effects were spermicidal but not spermiostatic as revealed by the sperm revival test. Conclusion: The results re-veal spermicidal activity in vitro of the seed extracts of Carica papaya.
文摘Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.
基金Funded by Key Project of National Science Foundation of China (No.60537050)the National Science Foundation of China (No. 60377032)
文摘The magnetic chitosan nanoparticles were prepared by reversed-phase suspension method using Span-80 as an emulsifier, glutaraldehyde as cross-linking reagent. And the nanoparticles were characterized by TEM, FT-IR and hysteresis loop. The results show that the nanoparticles are spherical and almost superparamagnetic. The laccase was immobilized on nanoparticles by adsorption and subsequently by cross-linking with glutaraldehyde. The immobilization conditions and charac-terizations of the immobilized laccase were investigated. The optimal immobilization conditions were as follows: 10 mL of phosphate buffer (0.1 M, pH 7.0) containing 50 mg of magnetic chitosan nanoparticles, 1.0 mg·mL-1 of laccase and 1% (v/v) glutaraldehyde, immobilization temperature of 4 ℃ and immobilization time of 4 h. The immobilized laccase exhibited an appreciable catalytic capability (480 units·g-1 support) and had good storage stability and operation stability. The Km of immobilized and free laccase for ABTS were 140.6 and 31.1 μM in phosphate buffer (0.1 M, pH 3.0) at 37 ℃, respectively. The immobilized laccase is a good candidate for the research and development of biosensors based on laccase catalysis.
基金Funded by the Natural Science Foundation of China (No. 50702014)Outstanding young teacher’s teaching and researching plan from Southeast UniversityOpening Project of Key Laboratory for Advanced Civil Engineering Materials from Tongjin University
文摘Two aspects of studies were carried out: 1) synthesis of geopolymer by using fly ash and metakaolin; 2) Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions. As for the synthesis of fly ash based geopolymer, 4 different fly ash content (10%, 30%, 50%, 70%) and 3 types of curing regimes (standard curing, steam curing and autoclave curing) were investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The experimental results show that geopolymer, containing 30% fly ash and synthesized at steam curing (80 ℃ for 8 h), exhibits higher mechanical strengths. The compressive and flexural strengths of fly ash based geopolymer reach 32.2 MPa and 7.15 MPa, respectively. Additionally, Infrared (IR) and X-ray diffraction (XRD) techniques were used to characterize the microstructure of the fly ash geopolymer. IR spectra shows that the absorptive band at 1086 cm^-1 shifts to lower wave number around 1033 cm^-1, and the 6-coordinated Al transforms into 4-coordination during the syn-thesis of fly ash based geopolymer. The resulting geopolymeric products were X-ray amorphous materials. As for immobilization of heavy metals, the leaching tests were employed to investigate the immobilization behaviors of the fly ash based geopolymer synthesized under the above optimum condition. The leaching tests showed that fly ash based geopolymer can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reached 90% greater when heavy metals were incorporated in the fly ash geopolymer in the range of 0.1% to 0.3%. The Pb exhibits better immobilization efficiency than the Cu, especially in the case of large dosages of heavy metals.
文摘<abstract>Aim: To identify possible spermicidal agents through screening a number of edible medicinal plants with antimicrobial activity. Methods: Initial screening was made on the basis of ram cauda epididymal sperm immobilization immediately after addition of extracts. The most potent extract was selected and was evaluated on both ram and human spermatozoa. To unravel its mode of action several sperm functional tests were carried out, namely viability of cells, hypo-osmotic swelling test for membrane integrity and assays of membrane-bound enzyme 5'-nucleotidase and acrosomal marker enzyme acrosin. Results: The crude aqueous extract of the bulb of Allium sativum L. showed the most promising results by instant immobilization of the ram epididymal sperm at 0.25 g/mL and human ejaculated sperm at 0.5 g/mL. Sperm immobilizing effects were irreversible and the factor of the extract responsible for immobilization was thermostable up to 90 癈. On boiling at 100 癈 for 10 minutes, this activity was markedly reduced. Moreover, this extract was able to cause aggregation of ram sperms into small clusters after 30 minutes of incubation at 37 癈. However this property was not found in human spermatozoa. More than 50 % reduction in sperm viability and hypo-osmotic swelling occurred in treated sperm as compared with the controls, indicating the possibility of plasma membrane disintegration which was further supported by the significant reduction in the activity of membrane bound 5'-nucleotidase and acrosomal acrosin. Conclusion: The crude aqueous extract of A. sativum bulb possesses spermicidal activity in vitro.
文摘Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,Ndimethylamino ethyl methacrylate (DMAEMA). Structural and morphological changes on the membrane surface were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Results reveal that both the plasma-treating conditions and the adsorbed DMAEMA amount have remarkable effects on the immobilization degree of DMAEMA. Peroxide determination by 1,1-diphenyl-2-picrvlhydrazyl (DPPH) method verifies the exsistence of radicals induced by plasma, which activize the immobilization reaction. Pure water contact angle on the membrane surface decreased with the increase of DMAEMA immobilization degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of immobilization degrees on pure water fluxes were also measured. It is shown that pure water fluxes first increased with immobilization degree and then decreased. Finally, permeation of bovine serum albumin (BSA) and lysozyme solution were measured to evaluate the antifouling property of the DMAEMA-modified membranes, from which it is shown that both hydrophilicity and electrostatic repulsion are beneficial for membrane antifouling.
文摘A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.