This review article deals with various aspects of the extrusion–spheronization technique.The first part includes different steps in the production process of pellets such as granulation, extrusion, spheronization, an...This review article deals with various aspects of the extrusion–spheronization technique.The first part includes different steps in the production process of pellets such as granulation, extrusion, spheronization, and drying. In the second part, the parameters which can influence the quality of pellets including formulation(moisture content, granulating liquid,excipients, and drugs), equipment(mixer, extruder, friction plate, and extrusion screen) and process(extrusion speed, extrusion temperature, spheronizer load, spheronization time,spheronization speed, and drying method) are discussed. In the final part, methods available for characterization(particle size distribution, surface area, shape and sphericity, porosity,density, hardness and friability, flow properties, disintegration, and dissolution) of the pellets are explained.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future....High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-adde...Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges.展开更多
This paper analyzes the implications on employment, taxation, and wildfire fuel reduction costs when using mobile pellet mills to remove biomass and <span style="font-family:Verdana;">reduce wildfire f...This paper analyzes the implications on employment, taxation, and wildfire fuel reduction costs when using mobile pellet mills to remove biomass and <span style="font-family:Verdana;">reduce wildfire fuels. Wildfire suppression costs in British Columbia hav</span><span style="font-family:Verdana;">e exceeded the set budget in 9 of the last 10 years and the province has only reduced the fuel load on a fraction of the high-risk hectares. Using a novel high-moisture mobile pellet mill allows the production of 89,000 tonnes of wood pellets each year for a price of $293 <img src="Edit_1733c4c4-fb86-4547-b5bd-749e94873516.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. Each tonne produced also provides $546 <img src="Edit_af634406-31e8-442c-baf8-b48928050931.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;"> in additional benefits from employment, taxation, and </span><span style="font-family:Verdana;">reductions in the cost to perform fuel treatments. The presented research</span><span style="font-family:Verdana;"> found that 11 employees are needed to operate a mobile pellet mill, with total employment of 242 for 22 systems across BC. The assessed system can also avoid $5.5 million in employment insurance payments. The 22 systems also provide $323,000 in taxable profits and $524,000 from income taxes from employees. Fuel treatment with the researched systems costs $1112 <img src="Edit_135d6ab7-4f3a-41dd-ba91-2d0d66933731.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. A </span><span style="font-family:Verdana;">cost</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">benefit analysis shows that the system provides $2.97 in benefits for</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"> every dollar invested.</span></span>展开更多
Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling ...Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.展开更多
Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we pr...Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we propose a one-step QD protocol based on the hyperentanglement.With the help of the non-local hyperentanglement-assisted Bell state measurement(BSM),the photons only need to transmit in the quantum channel once.We prove that our one-step QD protocol is secure in theory and numerically simulate its secret message capacity under practical experimental condition.Compared with previous QD protocols,the one-step QD protocol can effectively simplify the experiment operations and reduce the message loss caused by the photon transmission loss.Meanwhile,the non-local hyperentanglement-assisted BSM has a success probability of 100%and is feasible with linear optical elements.Moreover,combined with the hyperentanglement heralded amplification and purification,our protocol is possible to realize long-distance one-step QD.展开更多
Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pelle...Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pellets occurs due to the aggregation of metal-lic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation.This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions.Results showed that the sticking index(SI)decreased linearly with the increasing TiO2 addition.This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction,leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface.When the TiO2 addition amount was raised from 0 to 15wt%at 1100°C,the SI also increased from 0.71%to 59.91%.The connection of the slag phase could be attributed to the sticking at a low reduction temperature,corresponding to the low sticking strength.Moreover,the interconnection of metallic iron became the dominant factor,and the SI increased sharply with the increase in re-duction temperature.TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature.展开更多
Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there ...Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there are interactions between particle size reduction and pelleting.The objective of this experiment was to test the hypothesis that particle size reduction and pelleting,separately or in combination,increase N balance,apparent total tract digestibility(ATTD)of fiber and fat,and net energy(NE)in corn-soybean meal diets fed to group-housed pigs.Methods Six corn-soybean meal-based diets were used in a 3×2 factorial design with 3 particle sizes of corn(i.e.,700,500,or 300μm)and 2 diet forms(i.e.,meal or pelleted).Pigs were allowed ad libitum access to feed and water.Twenty-four castrated male pigs(initial weight:29.52 kg;standard diviation:1.40)were allotted to the 6 diets using a 6×6 Latin square design with 6 calorimeter chambers(i.e.,4 pigs/chamber)and 6 periods.Oxygen consumption and CO_(2)and CH_(4)productions were measured during fed and fasting states and fecal and urine samples were collected.Results Regardless of particle size of corn,the ATTD of gross energy(GE),N,and acid-hydrolyzed ether extract(AEE),and the concentration of NE were greater(P<0.05)in pelleted diets than in meal diets.Regardless of diet form,the ATTD of GE,N,and AEE,and the concentration of NE were increased(linear;P<0.05)by reducing the particle size of corn,but the increase was greater in meal diets than in pelleted diets(interaction;P<0.05).Conclusions Both pelleting and reduction of corn particle size increased nutrient digestibility and NE,but increases were greater in meal diets than in pelleted diets.展开更多
Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting ...Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting some attention. Hydrothermal carbonization is a thermal treatment of biomass in the presence of water in a temperature range of 180°C - 260°C. This method of treating biomass has some benefits which others do not, such as it can handle extremely wet biomass. However, treating biomass may not be enough for practical use. It may need to be transported and stored. Thus, this study explored the idea of pelletizing the HTC biomass. The mechanical strength of the HTC pellets was found to be 93%, whereas, higher heating value (HHV) (dry basis) was found to be 4% higher than the corresponding white pellets. The initial results with some limited parameters indicated that it would be possible to pelletize without binder. However, extensive research on energy balance and economic assessment would be necessary to achieve economic feasibility.展开更多
Objective:To assess the effect of leaf extract of Persicaria lanigera on cotton pellet-induced granuloma tissue formation and acetic acid-induced ulcerative colitis.Methods:Rats were randomly divided into six groups:n...Objective:To assess the effect of leaf extract of Persicaria lanigera on cotton pellet-induced granuloma tissue formation and acetic acid-induced ulcerative colitis.Methods:Rats were randomly divided into six groups:normal control,negative control,positive control(dexamethasone or sulfasalazine)as well as Persicaria lanigera(100-600 mg/kg)-treated groups.The effects of the extracts on body weight,antioxidant,and hematological parameters,as well as mast cell proliferation,were assessed.In addition,a histological evaluation was conducted.Results:Persicaria lanigera extract significantly decreased the mean exudate amount and suppressed granuloma tissue formation in a concentration-dependent manner in rats(P<0.05).Additionally,the extract significantly increased body weight,improved hematological profile,reduced the disease activity index score and malondialdehyde level,as well as enhanced catalase and superoxide dismutase activities(P<0.05).Histological evaluation showed Persicaria lanigera extract alleviated acetic acid-induced colonic damages,as evidenced by decreased cell necrosis,edema,and inflammatory cell infiltration.Conclusions:Persicaria lanigera extract possesses antiproliferative,antioxidative,and anti-colitis activities.However,its underlying mechanisms of action need further investigation.展开更多
The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))...The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.展开更多
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a...This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.展开更多
BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional mul...BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
The effects of Na_2CO_3 on the reduction and melting separation behavior of ludwigite/coal composite pellet, the desulfurization ratio and the property of the separated boron-rich slag were investigated at laboratory ...The effects of Na_2CO_3 on the reduction and melting separation behavior of ludwigite/coal composite pellet, the desulfurization ratio and the property of the separated boron-rich slag were investigated at laboratory scale in the present work. Na_2CO_3 could improve the reduction rate of the composite pellet to some extent. The melting separation of the composite pellet became increasingly difficult with the increase of Na_2CO_3 in the pellet due to the sharply increasing of the melting point of slag. The sulfur content of the iron nugget gradually decreased from 0.27% to 0.084%(mass fraction) with the Na_2CO_3 content in the pellet increasing from 0 to 6%. The efficiency of extraction of boron(EEB) of the slow cooled boron-rich slag decreased from 86.46% to 59.52% synchronously. Na_2CO_3 had obviously negative effect on melting separation of the composite pellet and boron extraction of the boron-rich slag.展开更多
文摘This review article deals with various aspects of the extrusion–spheronization technique.The first part includes different steps in the production process of pellets such as granulation, extrusion, spheronization, and drying. In the second part, the parameters which can influence the quality of pellets including formulation(moisture content, granulating liquid,excipients, and drugs), equipment(mixer, extruder, friction plate, and extrusion screen) and process(extrusion speed, extrusion temperature, spheronizer load, spheronization time,spheronization speed, and drying method) are discussed. In the final part, methods available for characterization(particle size distribution, surface area, shape and sphericity, porosity,density, hardness and friability, flow properties, disintegration, and dissolution) of the pellets are explained.
基金financially supported by the National Natural Science Foundation of China(No.51474161)the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
基金supported by the National Natural Science Foundation of China (Nos.52174277 and 52204309)the China Postdoctoral Science Foundation (No.2022M720683).
文摘High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
基金supported by the Fundamental Research Funds for the Central Universities of Southwest Jiaotong University,supported by Sichuan Science and Technology Program(2021YFS0284).
文摘Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges.
文摘This paper analyzes the implications on employment, taxation, and wildfire fuel reduction costs when using mobile pellet mills to remove biomass and <span style="font-family:Verdana;">reduce wildfire fuels. Wildfire suppression costs in British Columbia hav</span><span style="font-family:Verdana;">e exceeded the set budget in 9 of the last 10 years and the province has only reduced the fuel load on a fraction of the high-risk hectares. Using a novel high-moisture mobile pellet mill allows the production of 89,000 tonnes of wood pellets each year for a price of $293 <img src="Edit_1733c4c4-fb86-4547-b5bd-749e94873516.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. Each tonne produced also provides $546 <img src="Edit_af634406-31e8-442c-baf8-b48928050931.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;"> in additional benefits from employment, taxation, and </span><span style="font-family:Verdana;">reductions in the cost to perform fuel treatments. The presented research</span><span style="font-family:Verdana;"> found that 11 employees are needed to operate a mobile pellet mill, with total employment of 242 for 22 systems across BC. The assessed system can also avoid $5.5 million in employment insurance payments. The 22 systems also provide $323,000 in taxable profits and $524,000 from income taxes from employees. Fuel treatment with the researched systems costs $1112 <img src="Edit_135d6ab7-4f3a-41dd-ba91-2d0d66933731.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. A </span><span style="font-family:Verdana;">cost</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">benefit analysis shows that the system provides $2.97 in benefits for</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"> every dollar invested.</span></span>
基金supported by the National Natural Science Foundation of China (Grant Nos.12205196 and 12275040)the National Key Research and Development Program of China (Grant No.2022YFE03090003)。
文摘Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175106 and 92365110).
文摘Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we propose a one-step QD protocol based on the hyperentanglement.With the help of the non-local hyperentanglement-assisted Bell state measurement(BSM),the photons only need to transmit in the quantum channel once.We prove that our one-step QD protocol is secure in theory and numerically simulate its secret message capacity under practical experimental condition.Compared with previous QD protocols,the one-step QD protocol can effectively simplify the experiment operations and reduce the message loss caused by the photon transmission loss.Meanwhile,the non-local hyperentanglement-assisted BSM has a success probability of 100%and is feasible with linear optical elements.Moreover,combined with the hyperentanglement heralded amplification and purification,our protocol is possible to realize long-distance one-step QD.
基金the National Natural Science Foundation of China(No.51904063)the Science and Technology Plan Project of Liaoning Province,China(No.2022JH24/10200027)+1 种基金the Key Research and Development Project of Hebei Province,China(No.21314001D)the seventh batch of the Ten Thousand Talents Plan(No.ZX20220553).
文摘Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pellets occurs due to the aggregation of metal-lic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation.This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions.Results showed that the sticking index(SI)decreased linearly with the increasing TiO2 addition.This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction,leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface.When the TiO2 addition amount was raised from 0 to 15wt%at 1100°C,the SI also increased from 0.71%to 59.91%.The connection of the slag phase could be attributed to the sticking at a low reduction temperature,corresponding to the low sticking strength.Moreover,the interconnection of metallic iron became the dominant factor,and the SI increased sharply with the increase in re-duction temperature.TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature.
基金The financial support from the National Pork Board,Des Moines,IA,USA,is greatly appreciated。
文摘Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there are interactions between particle size reduction and pelleting.The objective of this experiment was to test the hypothesis that particle size reduction and pelleting,separately or in combination,increase N balance,apparent total tract digestibility(ATTD)of fiber and fat,and net energy(NE)in corn-soybean meal diets fed to group-housed pigs.Methods Six corn-soybean meal-based diets were used in a 3×2 factorial design with 3 particle sizes of corn(i.e.,700,500,or 300μm)and 2 diet forms(i.e.,meal or pelleted).Pigs were allowed ad libitum access to feed and water.Twenty-four castrated male pigs(initial weight:29.52 kg;standard diviation:1.40)were allotted to the 6 diets using a 6×6 Latin square design with 6 calorimeter chambers(i.e.,4 pigs/chamber)and 6 periods.Oxygen consumption and CO_(2)and CH_(4)productions were measured during fed and fasting states and fecal and urine samples were collected.Results Regardless of particle size of corn,the ATTD of gross energy(GE),N,and acid-hydrolyzed ether extract(AEE),and the concentration of NE were greater(P<0.05)in pelleted diets than in meal diets.Regardless of diet form,the ATTD of GE,N,and AEE,and the concentration of NE were increased(linear;P<0.05)by reducing the particle size of corn,but the increase was greater in meal diets than in pelleted diets(interaction;P<0.05).Conclusions Both pelleting and reduction of corn particle size increased nutrient digestibility and NE,but increases were greater in meal diets than in pelleted diets.
文摘Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting some attention. Hydrothermal carbonization is a thermal treatment of biomass in the presence of water in a temperature range of 180°C - 260°C. This method of treating biomass has some benefits which others do not, such as it can handle extremely wet biomass. However, treating biomass may not be enough for practical use. It may need to be transported and stored. Thus, this study explored the idea of pelletizing the HTC biomass. The mechanical strength of the HTC pellets was found to be 93%, whereas, higher heating value (HHV) (dry basis) was found to be 4% higher than the corresponding white pellets. The initial results with some limited parameters indicated that it would be possible to pelletize without binder. However, extensive research on energy balance and economic assessment would be necessary to achieve economic feasibility.
文摘Objective:To assess the effect of leaf extract of Persicaria lanigera on cotton pellet-induced granuloma tissue formation and acetic acid-induced ulcerative colitis.Methods:Rats were randomly divided into six groups:normal control,negative control,positive control(dexamethasone or sulfasalazine)as well as Persicaria lanigera(100-600 mg/kg)-treated groups.The effects of the extracts on body weight,antioxidant,and hematological parameters,as well as mast cell proliferation,were assessed.In addition,a histological evaluation was conducted.Results:Persicaria lanigera extract significantly decreased the mean exudate amount and suppressed granuloma tissue formation in a concentration-dependent manner in rats(P<0.05).Additionally,the extract significantly increased body weight,improved hematological profile,reduced the disease activity index score and malondialdehyde level,as well as enhanced catalase and superoxide dismutase activities(P<0.05).Histological evaluation showed Persicaria lanigera extract alleviated acetic acid-induced colonic damages,as evidenced by decreased cell necrosis,edema,and inflammatory cell infiltration.Conclusions:Persicaria lanigera extract possesses antiproliferative,antioxidative,and anti-colitis activities.However,its underlying mechanisms of action need further investigation.
基金Project(52274343)supported by the National Natural Science Foundation of ChinaProjects(2023YFC3903900,2023YFC3903904)supported by the National Key R&D Program of China。
文摘The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.
基金Funded by Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education(No.JLJZHDKF202204)。
文摘This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.
基金Supported by The Key Medical Specialty Nurturing Program of Foshan During The 14th Five-Year Plan Period,No.FSPY145205The Medical Research Project of Foshan Health Bureau,No.20230814A010024+1 种基金The Guangzhou Science and Technology Plan Project,No.202102010251the Guangdong Science and Technology Program,No.2017ZC0222.
文摘BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金Project(51274033) supported by the National Natural Science Foundation of China
文摘The effects of Na_2CO_3 on the reduction and melting separation behavior of ludwigite/coal composite pellet, the desulfurization ratio and the property of the separated boron-rich slag were investigated at laboratory scale in the present work. Na_2CO_3 could improve the reduction rate of the composite pellet to some extent. The melting separation of the composite pellet became increasingly difficult with the increase of Na_2CO_3 in the pellet due to the sharply increasing of the melting point of slag. The sulfur content of the iron nugget gradually decreased from 0.27% to 0.084%(mass fraction) with the Na_2CO_3 content in the pellet increasing from 0 to 6%. The efficiency of extraction of boron(EEB) of the slow cooled boron-rich slag decreased from 86.46% to 59.52% synchronously. Na_2CO_3 had obviously negative effect on melting separation of the composite pellet and boron extraction of the boron-rich slag.