There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical pro...There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical properties.Idealized supercell simulations are produced using the WRF model coupled with“full”Hebrew University spectral bin MP(HU-SBM),and NSSL and Thompson bulk MP(BMP)schemes.HU-SBM downdrafts are typically weaker than those of the NSSL and Thompson simulations,accompanied by less rain evaporation.HU-SBM produces more cloud ice(plates),graupel,and hail than the BMPs,yet precipitates less at the surface.The limiting mass bins(and subsequently,particle size)of rimed ice in HU-SBM and slower rimed ice fall speeds lead to smaller melting-level net rimed ice fluxes than those of the BMPs.Aggregation from plates in HU-SBM,together with snow–graupel collisions,leads to a greater snow contribution to rain than those of the BMPs.Replacing HU-SBM’s fall speeds using the formulations of the BMPs after aggregating the discrete bin values to mass mixing ratios and total number concentrations increases net rain and rimed ice fluxes.Still,they are smaller in magnitude than bulk rain,NSSL hail,and Thompson graupel net fluxes near the surface.Conversely,the melting-layer net rimed ice fluxes are reduced when the fall speeds for the NSSL and Thompson simulations are calculated using HU-SBM fall speed formulations after discretizing the bulk particle size distributions(PSDs)into spectral bins.The results highlight precipitation sensitivity to storm dynamics,fall speed,hydrometeor evolution governed by process rates,and MP PSD design.展开更多
With microscopic phase-field kinetic model, atomic-scale computer simulation program for the precipitation sequence and microstructure evolution of the ordered intermetallic compound γ' and θ in ternary Ni75AlxV25-...With microscopic phase-field kinetic model, atomic-scale computer simulation program for the precipitation sequence and microstructure evolution of the ordered intermetallic compound γ' and θ in ternary Ni75AlxV25-x alloy were studied. The simulation results show that Al concentration has important effects on the precipitation sequence. When Al concentration in Ni75AlxV25-x alloy is low, 0(Ni3V) ordered phase will be firstly precipitated, followed by γ'(Ni3Al) ordered phase. With Al concentration increasing, θ and γ' ordered phases are simultaneously precipitated. With A1 concentration further increasing, γ' ordered phase is firstly precipitated, followed by θ ordered phase. There is a competition relationship between θ and γ' ordered phases during growth and coarsening process. No matter which first precipitates, θ ordered phase always occupies advantage in the competition process of coarsening, thus, the microstructure with preferred orientation is formed.展开更多
The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile s...The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.展开更多
Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a ...Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a series of two-dimensional cloud-resolving model sensitivity experiments in this study. The model is imposed by zero vertical velocity.The exclusion of water radiative processes in the presence of ice radiative processes, as well as the removal of ice radiative processes, enhances tropospheric Iongwave radiative cooling and lowers air temperature and the saturation mixing ratio. The reduction in the saturation mixing ratio leads to an increase in vapor condensation and an associated release of latent heat, which increases rainfall. The elimination of water radiative processes strengthens local atmospheric warming Iongwave radiative cooling. The enhanced warming melting of graupel, which increases rainfa n the upper troposphere via a reduction in ncreases the rain source via an increase in the展开更多
Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During...Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.展开更多
[Objective] The aim was to analyze one strong precipitation process in Northern Guangxi from May 27 to 28 in 2010.[Method] By dint of 2.5×2.5 NCEP reanalysis data,physical quantities such as the water vapor flux,...[Objective] The aim was to analyze one strong precipitation process in Northern Guangxi from May 27 to 28 in 2010.[Method] By dint of 2.5×2.5 NCEP reanalysis data,physical quantities such as the water vapor flux,pseudo-equivalent temperature,Non-geotropic wet Q vector in one front rainstorm process in north Guangxi from May 27 to 28 in 2010 was expounded.The forecast application of Non-geotropic wet Q vector in rainstorm falling area in Guangxi during early flood period was discussed.[Result] The water vapor in Bay of Bengal transported to Guangxi and formed convergence lifting movement in north Guangxi,which provided favorable water vapor transportation condition for the generation of strong precipitation in north Guangxi.The 850 hPa pseudo-equivalent temperature front (close area) moved southward to the north part of Guangxi.North Guangxi was in pseudo-equivalent temperature area.The highly wet unstable energy of lower layer and the cold air penetrating downward from the middle layer led to potential instability in the lower level established in northern Guangxi,which thus provided certain thermal condition for the strong precipitation process;Northern Guangxi was in the overlap region of the maximum gradient region of contour Qx at 850 hPa and stronger negative areas of ▽Q,which provided favorable dynamic condition for the rainstorm process in northern Guangxi in the future.[Conclusion] The study provided reference in accordance to the forecast of rainstorm.展开更多
To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced in...To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain(UFG) interiors of 7075 Al alloy by equal-channel-angular(ECAP) processing at 250 ℃ for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075 Al alloy exhibits superior mechanical properties(yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050 Al counterpart(yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075 Al and 1050 Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075 Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.展开更多
The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard...The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard to accurately establish a mathematical model of the process featured by strong nonlinearity,uncertainty and time-delay.A modeling method based on time-delay fuzzy gray cognitive network(T-FGCN)for the goethite iron precipitation process was proposed in this paper.On the basis of the process mechanism,experts’practical experience and historical data,the T-FGCN model of the goethite iron precipitation system was established and the weights were studied by using the nonlinear hebbian learning(NHL)algorithm with terminal constraints.By analyzing the system in uncertain environment of varying degrees,in the environment of high uncertainty,the T-FGCN can accurately simulate industrial systems with large time-delay and uncertainty and the simulated system can converge to steady state with zero gray scale or a small one.展开更多
Single phase of Ba1-x MgAl10O17 : x Eu^2+ (0.02≤ x ≤ 0. 14) phosphors was first successfully prepared by coprecipitation in aqueous medium with a “reverse strike” method, using oxalic acid and ammonia together...Single phase of Ba1-x MgAl10O17 : x Eu^2+ (0.02≤ x ≤ 0. 14) phosphors was first successfully prepared by coprecipitation in aqueous medium with a “reverse strike” method, using oxalic acid and ammonia together as precipitants. Completely crystallized phosphors were obtained at 1300 ℃, which is 300 ℃ lower than the temperature of solid-state reaction. Their photoluminescence was investigated under UV and VUV region, respectively. The emission spectra of Ba1-x MgAl10O17:xEu^2+ samples excited by 254 or 147 nm showed a characteristic wide band with the peak centred at about 450 454 nm. Optimum emission intensity reached at x = 0.1 and then concentration quenching occurred. The synthesized phosphor shows 10% higher emission intensity than that prepared by solid-state reaction.展开更多
Yield loss due to low precipitation use efficiency(PUE)occurs frequently in dryland crop production.PUE is determined by a complicated process of precipitation use in farmland,which includes several sequential steps:p...Yield loss due to low precipitation use efficiency(PUE)occurs frequently in dryland crop production.PUE is determined by a complicated process of precipitation use in farmland,which includes several sequential steps:precipitation infiltrates into the soil,the infiltrated precipitation is stored in soil,the soil-stored precipitation is consumed through transpiration or evaporation,transpired precipitation is used to produce dry-matter,and finally dry-matter is re-allocated to grains.These steps can be quantified by six ratios:precipitation infiltration ratio(SW/SWe;SW,total available water;SWe,available soil water storage at the end of a specific period),precipitation storage ratio(SWe/P;P,effective precipitation),precipitation consumption ratio(ET/SW;ET,evapotranspiration),ratio of crop transpiration to evapotranspiration(T/ET;T,crop transpiration),transpiration efficiency(B/T;B,the increment of shoot biomass)and harvest index(Y/B;Y,grain yield).The final efficiency is then calculated as:PUE=SWe/P×SW/SWe×ET/SW×T/ET×B/T×Y/B.Quantifying each of those ratios is crucial for the planning and execution of PUE improvements and for optimizing the corresponding agronomic practices in a specific agricultural system.In this study,those ratios were quantified and evaluated under four integrated agronomic management systems.Our study revealed that PUE and wheat yield were significantly increased by 8–31%under manure(MIS)or biochar(BIS)integrated systems compared to either conventional farmers’(CF)or high N(HN)integrated systems.In the infiltration and storage steps,MIS and BIS resulted in lower SWe/P but higher SW/SWe compared with CF and HN.Regarding the consumption step,the annual ET/SW under MIS and BIS did not increase due to the higher ET after regreening and the lower ET before regreening compared with CF or HN.The T/ET was significantly higher under MIS and BIS than under CF or HN.In the last two steps,transpiration efficiency and harvest index were less strongly affected by the agronomic management system,although both values varied considerably across the different experimental years.Therefore,attempts to achieve higher PUE and yields in rainfed wheat through agronomic management should focus on increasing the T/ET and SW/SWe,while maintaining ET/SW throughout the year and keeping SWe/P relatively low at harvest time.展开更多
The response of vegetation productivity to precipitation is becoming a worldwide concern.Most reports on responses of vegetation to precipitation trends are based on the growth season.In the soil freeze/thaw process,t...The response of vegetation productivity to precipitation is becoming a worldwide concern.Most reports on responses of vegetation to precipitation trends are based on the growth season.In the soil freeze/thaw process,the soil water phase and heat transport change can affect root growth,especially during the thawing process in early spring.A field experiment with increased precipitation(control,increased 25%and increased 50%)was conducted to measure the effects of soil water in early spring on above-and below-ground productivity in an alpine steppe over two growing seasons from June 2017 to September 2018.The increased 50%treatment significantly increased the soil moisture at the 10 cm depth,there was no difference in soil moisture between the increased 25%treatment and the control in the growing season,which was not consistent in the freeze/thaw process.Increased soil moisture during the non-growing season retarded root growth.Increased precipitation in the freezing-thawing period can partially offset the difference between the control and increased precipitation plots in both above-and below-ground biomass.展开更多
The precipitation process of Ni-Cr-Al alloy with low Al content was studied at atomic scale based on the microscopicphase-field kinetic model coupled with elastic strain energy.The aim is to investigate the effect of ...The precipitation process of Ni-Cr-Al alloy with low Al content was studied at atomic scale based on the microscopicphase-field kinetic model coupled with elastic strain energy.The aim is to investigate the effect of elastic strain energy onprecipitation mechanism and morphological evolution of the alloy.The simulation results show that in the early stage of precipitation,D022 phase and L12 phase present irregular shape,and they randomly distribute in the matrix.With the progress of aging,L12 phaseand D022 phase change into the quadrate shape and their orientations become more obvious.In the later stage,L12 phase and D022phase present quadrate shape with round corner and align along the[100]and[010]directions,and highly preferential selectedmicrostructure is formed.The mechanism of early precipitation of L12 phase in Ni-17%Cr-7.5%Al(mole fraction)alloy is the mixedstyle of non-classical nucleation growth and spinodal decomposition and the D022 phase is the spinodal decomposition.Themechanisms of early precipitation of L12 phase and D022 phase in Ni-12.5%Cr-7.5%Al alloy are both the non-classical nucleationand growth.The coarsening process follows the rule of preferential selected coarsening.展开更多
In this work, 10 batches of Salvia miltiorrhiza concentrate were prepared and purified with ethanol precipitation process. Dry matter content, pH value, conductivity and water content of the concentrates and supernata...In this work, 10 batches of Salvia miltiorrhiza concentrate were prepared and purified with ethanol precipitation process. Dry matter content, pH value, conductivity and water content of the concentrates and supernatants were all determined. When more ethanol was used in ethanol precipitation, the pH value of the supernatant generally increased, but dry matter content, water content, and the conductivity decreased. Multivariate linear models were built with the most determination coefficient values greater than 0.7. More than 80% of stachyose was removed in the ethanol precipitation process. The removal rate of fructose, raffinose and sucrose were all higher than 30%. When ethanol addition amount increased, the purity of phenolic acids in the supernatant increased, but the retention of lithosperimic acid and salvianolic acid B decreased. The conductivity and pH value of concentrated extract show relatively small influences on ethanol precipitation indices. When fructose, raffinose, or stachyose contents in the concentrated extract were high, the retention rate of phenolic acids tends to be low on most occasions. The purity and retention rate of phenolic acids in the supernatants were also affected by the purity of phenolic acids in the concentrated. The sugar contents in the concentrate are suggested to be monitored in industry because they significantly affect ethanol precipitation process indices.展开更多
Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared wi...Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties.展开更多
Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium allo...Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium alloys due to their high chemical reactivity.Herein,a one-step hydrothermal processing was developed using a stearic-acid-based precursor medium,which enables the hydrothermal conversion and the formation of low surface energy materials concurrently to produce the super-hydrophobic and corrosion-resistant coating.The multiscale microstructures with nanoscale stacks and microscale spheres on the surface,as well as the through-thickness stearates,lead to the super-hydrophobicity and excellent corrosion resistance of the obtained coating.展开更多
Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated usin...Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated using the multi-linear regression method. Results indicate that T generally makes positive contributions to H, while w exhibits different (positive or negative) impacts due to soil ice effects. For example, w negatively contributes to H if soil contains more ice; however, after soil ice melts, w exerts positive contributions. In particular, due to lower w interannual variabilities in the deep soil layer (i.e., the fifth layer), H is more sensitive to T than to w. Moreover, to compare the potential capabilities of H, w and T in precipitation (P) prediction, the Huanghe-Huaihe Basin (HHB) and Southeast China (SEC), with similar sensitivities of H to w and T, are selected. Analyses show that, despite similar spatial distributions of H-P and T-P correlation coefficients, the former values are always higher than the latter ones. Furthermore, H provides the most effective signals for P prediction over HHB and SEC, i.e., a significant leading correlation between May H and early summer (June) P. In summary, H, which integrates the effects of T and w as an independent variable, has greater capabilities in monitoring land surface heating and improving seasonal P prediction relative to individual land surface factors (e.g., T and w).展开更多
Cyclic metallurgical process for separation and recovery of Cr from vanadium precipitated solution by precipitation with PbCO_(3)and leaching with Na_(2)CO_(3)was investigated.The concentration of Cr residue in the so...Cyclic metallurgical process for separation and recovery of Cr from vanadium precipitated solution by precipitation with PbCO_(3)and leaching with Na_(2)CO_(3)was investigated.The concentration of Cr residue in the solution decreases from 2.360 to 0.001 g/L by adding PbCO_(3)into vanadium precipitated solution according to Pb/Cr molar ratio of 2.5,adjusting the pH to 3.0 and stirring for 180 min at 30℃.Then,the precipitates were leached with hot Na_(2)CO_(3)solution to obtain leaching solution containing Na_(2)CrO_(4)and leaching residue containing PbCO_(3).The leaching efficiency of Cr reaches 96.43%by adding the precipitates into 0.5 mol/L Na_(2)CO_(3)solution with the mass ratio of liquid to solid(L/S)of 10:1 mL/g and stirring for 60 min under pH 9.5 at 70℃.After filtration,leaching residue is reused in Cr precipitation and leaching solution is used to circularly leach the Cr precipitates until Na_(2)CrO_(4)approaches the saturation.Finally,the product of Na_(2)CrO_(4)·4H_(2)O is obtained by evaporation and crystallization of leaching solution.展开更多
Periodical attenuation of particles,which interferes seriously the normal alumina production,exists in Bayer process.In order to solve this problem,the rule of periodical attenuation of Al(OH) 3 particles was investig...Periodical attenuation of particles,which interferes seriously the normal alumina production,exists in Bayer process.In order to solve this problem,the rule of periodical attenuation of Al(OH) 3 particles was investigated by laboratory experiments under simulated industrial conditions.The results show that at higher temperature the variation period of particle size is shortened,while prolongs with more solid content.Particle size fluctuation amplitude reduces with the temperature rising but increases with the solid content increasing.Particle size distribution becomes more uniform by replenishing fine seeds,enabling the periodical fluctuation of Al(OH)3 particle size to be attenuated.Combining properly the additives with controlling the seed size is able to reduce the amplitude of periodical fluctuation and shorten the attenuation time.With unbalance of particle size distribution,the particles gradually become bigger,even inducing the decrease of the specific surface area of seeds,which is the major reason causing explosive attenuation of Al(OH)3 particles in seed precipitation process.展开更多
This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A r...This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.展开更多
基金This research was primarily supported by a NOAA Warn-on-Forecast(WoF)grant(Grant No.NA16OAR4320115).
文摘There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical properties.Idealized supercell simulations are produced using the WRF model coupled with“full”Hebrew University spectral bin MP(HU-SBM),and NSSL and Thompson bulk MP(BMP)schemes.HU-SBM downdrafts are typically weaker than those of the NSSL and Thompson simulations,accompanied by less rain evaporation.HU-SBM produces more cloud ice(plates),graupel,and hail than the BMPs,yet precipitates less at the surface.The limiting mass bins(and subsequently,particle size)of rimed ice in HU-SBM and slower rimed ice fall speeds lead to smaller melting-level net rimed ice fluxes than those of the BMPs.Aggregation from plates in HU-SBM,together with snow–graupel collisions,leads to a greater snow contribution to rain than those of the BMPs.Replacing HU-SBM’s fall speeds using the formulations of the BMPs after aggregating the discrete bin values to mass mixing ratios and total number concentrations increases net rain and rimed ice fluxes.Still,they are smaller in magnitude than bulk rain,NSSL hail,and Thompson graupel net fluxes near the surface.Conversely,the melting-layer net rimed ice fluxes are reduced when the fall speeds for the NSSL and Thompson simulations are calculated using HU-SBM fall speed formulations after discretizing the bulk particle size distributions(PSDs)into spectral bins.The results highlight precipitation sensitivity to storm dynamics,fall speed,hydrometeor evolution governed by process rates,and MP PSD design.
基金Projects(51174168,51274167)supported by the National Natural Science Foundation of ChinaProject(2014JM7261)supported by the Natural Science Basic Research Plan in Shaanxi Province of ChinaProject(B08040)supported by "111" Project,China
文摘With microscopic phase-field kinetic model, atomic-scale computer simulation program for the precipitation sequence and microstructure evolution of the ordered intermetallic compound γ' and θ in ternary Ni75AlxV25-x alloy were studied. The simulation results show that Al concentration has important effects on the precipitation sequence. When Al concentration in Ni75AlxV25-x alloy is low, 0(Ni3V) ordered phase will be firstly precipitated, followed by γ'(Ni3Al) ordered phase. With Al concentration increasing, θ and γ' ordered phases are simultaneously precipitated. With A1 concentration further increasing, γ' ordered phase is firstly precipitated, followed by θ ordered phase. There is a competition relationship between θ and γ' ordered phases during growth and coarsening process. No matter which first precipitates, θ ordered phase always occupies advantage in the competition process of coarsening, thus, the microstructure with preferred orientation is formed.
基金financially supported by the Project of Science and Technology of Beijing(No.10231103)
文摘The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.
基金supported by the National Natural Science Foundation of China[grant number 41475039]the National Basic Research Program of China[grant number 2015CB953601]
文摘Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a series of two-dimensional cloud-resolving model sensitivity experiments in this study. The model is imposed by zero vertical velocity.The exclusion of water radiative processes in the presence of ice radiative processes, as well as the removal of ice radiative processes, enhances tropospheric Iongwave radiative cooling and lowers air temperature and the saturation mixing ratio. The reduction in the saturation mixing ratio leads to an increase in vapor condensation and an associated release of latent heat, which increases rainfall. The elimination of water radiative processes strengthens local atmospheric warming Iongwave radiative cooling. The enhanced warming melting of graupel, which increases rainfa n the upper troposphere via a reduction in ncreases the rain source via an increase in the
基金Technology Innovation Foundation of Middle-minor Enterprises of Science and Technology from Ministryof Science and Technology (No. 19995103020074, 20003403023018)
文摘Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.
基金Supported by New Meteorological Technology Promotion Program (CMATG2010Y16)Guangxi Natural Fund Program (2010GXNSFA013012)
文摘[Objective] The aim was to analyze one strong precipitation process in Northern Guangxi from May 27 to 28 in 2010.[Method] By dint of 2.5×2.5 NCEP reanalysis data,physical quantities such as the water vapor flux,pseudo-equivalent temperature,Non-geotropic wet Q vector in one front rainstorm process in north Guangxi from May 27 to 28 in 2010 was expounded.The forecast application of Non-geotropic wet Q vector in rainstorm falling area in Guangxi during early flood period was discussed.[Result] The water vapor in Bay of Bengal transported to Guangxi and formed convergence lifting movement in north Guangxi,which provided favorable water vapor transportation condition for the generation of strong precipitation in north Guangxi.The 850 hPa pseudo-equivalent temperature front (close area) moved southward to the north part of Guangxi.North Guangxi was in pseudo-equivalent temperature area.The highly wet unstable energy of lower layer and the cold air penetrating downward from the middle layer led to potential instability in the lower level established in northern Guangxi,which thus provided certain thermal condition for the strong precipitation process;Northern Guangxi was in the overlap region of the maximum gradient region of contour Qx at 850 hPa and stronger negative areas of ▽Q,which provided favorable dynamic condition for the rainstorm process in northern Guangxi in the future.[Conclusion] The study provided reference in accordance to the forecast of rainstorm.
基金the National Key R&D Program of China(No.2017YFA0204403)the National Natural Science Foundation of China(Nos.51971112,51225102)the Fundamental Research Funds for the Central Universities,China(No.30919011405).
文摘To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain(UFG) interiors of 7075 Al alloy by equal-channel-angular(ECAP) processing at 250 ℃ for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075 Al alloy exhibits superior mechanical properties(yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050 Al counterpart(yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075 Al and 1050 Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075 Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.
基金Project(61673399)supported by the National Natural Science Foundation of ChinaProject(2017JJ2329)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018zzts550)supported by the Fundamental Research Funds for Central Universities,China
文摘The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard to accurately establish a mathematical model of the process featured by strong nonlinearity,uncertainty and time-delay.A modeling method based on time-delay fuzzy gray cognitive network(T-FGCN)for the goethite iron precipitation process was proposed in this paper.On the basis of the process mechanism,experts’practical experience and historical data,the T-FGCN model of the goethite iron precipitation system was established and the weights were studied by using the nonlinear hebbian learning(NHL)algorithm with terminal constraints.By analyzing the system in uncertain environment of varying degrees,in the environment of high uncertainty,the T-FGCN can accurately simulate industrial systems with large time-delay and uncertainty and the simulated system can converge to steady state with zero gray scale or a small one.
基金Project supported bythe National Natural Science Foundation of China (50272026) ,the Excellent Young Teachers ProgramofMOE,China (EYTP) and the Natural Science Foundation of Gansu Province (ZS031-A25-033-C)
文摘Single phase of Ba1-x MgAl10O17 : x Eu^2+ (0.02≤ x ≤ 0. 14) phosphors was first successfully prepared by coprecipitation in aqueous medium with a “reverse strike” method, using oxalic acid and ammonia together as precipitants. Completely crystallized phosphors were obtained at 1300 ℃, which is 300 ℃ lower than the temperature of solid-state reaction. Their photoluminescence was investigated under UV and VUV region, respectively. The emission spectra of Ba1-x MgAl10O17:xEu^2+ samples excited by 254 or 147 nm showed a characteristic wide band with the peak centred at about 450 454 nm. Optimum emission intensity reached at x = 0.1 and then concentration quenching occurred. The synthesized phosphor shows 10% higher emission intensity than that prepared by solid-state reaction.
基金support of the National Key Research and Development Program of China(2021YFD1900705)the National Basic Research Program of China(2015CB150402)the National Key Technology R&D Program of China(2015BAD22B01).
文摘Yield loss due to low precipitation use efficiency(PUE)occurs frequently in dryland crop production.PUE is determined by a complicated process of precipitation use in farmland,which includes several sequential steps:precipitation infiltrates into the soil,the infiltrated precipitation is stored in soil,the soil-stored precipitation is consumed through transpiration or evaporation,transpired precipitation is used to produce dry-matter,and finally dry-matter is re-allocated to grains.These steps can be quantified by six ratios:precipitation infiltration ratio(SW/SWe;SW,total available water;SWe,available soil water storage at the end of a specific period),precipitation storage ratio(SWe/P;P,effective precipitation),precipitation consumption ratio(ET/SW;ET,evapotranspiration),ratio of crop transpiration to evapotranspiration(T/ET;T,crop transpiration),transpiration efficiency(B/T;B,the increment of shoot biomass)and harvest index(Y/B;Y,grain yield).The final efficiency is then calculated as:PUE=SWe/P×SW/SWe×ET/SW×T/ET×B/T×Y/B.Quantifying each of those ratios is crucial for the planning and execution of PUE improvements and for optimizing the corresponding agronomic practices in a specific agricultural system.In this study,those ratios were quantified and evaluated under four integrated agronomic management systems.Our study revealed that PUE and wheat yield were significantly increased by 8–31%under manure(MIS)or biochar(BIS)integrated systems compared to either conventional farmers’(CF)or high N(HN)integrated systems.In the infiltration and storage steps,MIS and BIS resulted in lower SWe/P but higher SW/SWe compared with CF and HN.Regarding the consumption step,the annual ET/SW under MIS and BIS did not increase due to the higher ET after regreening and the lower ET before regreening compared with CF or HN.The T/ET was significantly higher under MIS and BIS than under CF or HN.In the last two steps,transpiration efficiency and harvest index were less strongly affected by the agronomic management system,although both values varied considerably across the different experimental years.Therefore,attempts to achieve higher PUE and yields in rainfed wheat through agronomic management should focus on increasing the T/ET and SW/SWe,while maintaining ET/SW throughout the year and keeping SWe/P relatively low at harvest time.
基金funded by the Second Tibetan Plateau Scientific Explorationthe Strategic Priority Research Program of Chinese Academy of Sciences+1 种基金the National Natural Science Foundation,grant number 2019QZKK0404,XDA20020401,41977284by the Doctoral Science Foundation of Henan Polytechnic University(B2019-019)。
文摘The response of vegetation productivity to precipitation is becoming a worldwide concern.Most reports on responses of vegetation to precipitation trends are based on the growth season.In the soil freeze/thaw process,the soil water phase and heat transport change can affect root growth,especially during the thawing process in early spring.A field experiment with increased precipitation(control,increased 25%and increased 50%)was conducted to measure the effects of soil water in early spring on above-and below-ground productivity in an alpine steppe over two growing seasons from June 2017 to September 2018.The increased 50%treatment significantly increased the soil moisture at the 10 cm depth,there was no difference in soil moisture between the increased 25%treatment and the control in the growing season,which was not consistent in the freeze/thaw process.Increased soil moisture during the non-growing season retarded root growth.Increased precipitation in the freezing-thawing period can partially offset the difference between the control and increased precipitation plots in both above-and below-ground biomass.
基金Projects(50671084,50071046)supported by the National Natural Science Foundation of ChinaProject(2002AA331051)supported by the National Hi-Tech Research Development Program of China
文摘The precipitation process of Ni-Cr-Al alloy with low Al content was studied at atomic scale based on the microscopicphase-field kinetic model coupled with elastic strain energy.The aim is to investigate the effect of elastic strain energy onprecipitation mechanism and morphological evolution of the alloy.The simulation results show that in the early stage of precipitation,D022 phase and L12 phase present irregular shape,and they randomly distribute in the matrix.With the progress of aging,L12 phaseand D022 phase change into the quadrate shape and their orientations become more obvious.In the later stage,L12 phase and D022phase present quadrate shape with round corner and align along the[100]and[010]directions,and highly preferential selectedmicrostructure is formed.The mechanism of early precipitation of L12 phase in Ni-17%Cr-7.5%Al(mole fraction)alloy is the mixedstyle of non-classical nucleation growth and spinodal decomposition and the D022 phase is the spinodal decomposition.Themechanisms of early precipitation of L12 phase and D022 phase in Ni-12.5%Cr-7.5%Al alloy are both the non-classical nucleationand growth.The coarsening process follows the rule of preferential selected coarsening.
文摘In this work, 10 batches of Salvia miltiorrhiza concentrate were prepared and purified with ethanol precipitation process. Dry matter content, pH value, conductivity and water content of the concentrates and supernatants were all determined. When more ethanol was used in ethanol precipitation, the pH value of the supernatant generally increased, but dry matter content, water content, and the conductivity decreased. Multivariate linear models were built with the most determination coefficient values greater than 0.7. More than 80% of stachyose was removed in the ethanol precipitation process. The removal rate of fructose, raffinose and sucrose were all higher than 30%. When ethanol addition amount increased, the purity of phenolic acids in the supernatant increased, but the retention of lithosperimic acid and salvianolic acid B decreased. The conductivity and pH value of concentrated extract show relatively small influences on ethanol precipitation indices. When fructose, raffinose, or stachyose contents in the concentrated extract were high, the retention rate of phenolic acids tends to be low on most occasions. The purity and retention rate of phenolic acids in the supernatants were also affected by the purity of phenolic acids in the concentrated. The sugar contents in the concentrate are suggested to be monitored in industry because they significantly affect ethanol precipitation process indices.
基金Projects(51274083,51074062)supported by the National Natural Science Foundation of China
文摘Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties.
基金support from the Fundamental Research Funds for the Central Universities of Hohai university(B200202122)National Natural Science Foundation of China(51878246 and 51979099)+1 种基金the Natural Science Foundation of Jiangsu Province of China(BK20191303)Key Research and Development Project of Jiangsu Province of China(BE2017148).
文摘Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium alloys due to their high chemical reactivity.Herein,a one-step hydrothermal processing was developed using a stearic-acid-based precursor medium,which enables the hydrothermal conversion and the formation of low surface energy materials concurrently to produce the super-hydrophobic and corrosion-resistant coating.The multiscale microstructures with nanoscale stacks and microscale spheres on the surface,as well as the through-thickness stearates,lead to the super-hydrophobicity and excellent corrosion resistance of the obtained coating.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 41230422 and 41625019)the Special Fund for Research in the Public Interest of China (Grant No. GYHY201206017)+2 种基金the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130047 and BK20151525)the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. KYLX 0823)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated using the multi-linear regression method. Results indicate that T generally makes positive contributions to H, while w exhibits different (positive or negative) impacts due to soil ice effects. For example, w negatively contributes to H if soil contains more ice; however, after soil ice melts, w exerts positive contributions. In particular, due to lower w interannual variabilities in the deep soil layer (i.e., the fifth layer), H is more sensitive to T than to w. Moreover, to compare the potential capabilities of H, w and T in precipitation (P) prediction, the Huanghe-Huaihe Basin (HHB) and Southeast China (SEC), with similar sensitivities of H to w and T, are selected. Analyses show that, despite similar spatial distributions of H-P and T-P correlation coefficients, the former values are always higher than the latter ones. Furthermore, H provides the most effective signals for P prediction over HHB and SEC, i.e., a significant leading correlation between May H and early summer (June) P. In summary, H, which integrates the effects of T and w as an independent variable, has greater capabilities in monitoring land surface heating and improving seasonal P prediction relative to individual land surface factors (e.g., T and w).
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51974369)NSFC-STINT(No.52111530192)+1 种基金Postgraduate Research Innovation Project of Central South University,China(No.2019zzts244)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China(No.CSUZC202029).
文摘Cyclic metallurgical process for separation and recovery of Cr from vanadium precipitated solution by precipitation with PbCO_(3)and leaching with Na_(2)CO_(3)was investigated.The concentration of Cr residue in the solution decreases from 2.360 to 0.001 g/L by adding PbCO_(3)into vanadium precipitated solution according to Pb/Cr molar ratio of 2.5,adjusting the pH to 3.0 and stirring for 180 min at 30℃.Then,the precipitates were leached with hot Na_(2)CO_(3)solution to obtain leaching solution containing Na_(2)CrO_(4)and leaching residue containing PbCO_(3).The leaching efficiency of Cr reaches 96.43%by adding the precipitates into 0.5 mol/L Na_(2)CO_(3)solution with the mass ratio of liquid to solid(L/S)of 10:1 mL/g and stirring for 60 min under pH 9.5 at 70℃.After filtration,leaching residue is reused in Cr precipitation and leaching solution is used to circularly leach the Cr precipitates until Na_(2)CrO_(4)approaches the saturation.Finally,the product of Na_(2)CrO_(4)·4H_(2)O is obtained by evaporation and crystallization of leaching solution.
基金Project(50804031) supported by the National Natural Science Foundation of China
文摘Periodical attenuation of particles,which interferes seriously the normal alumina production,exists in Bayer process.In order to solve this problem,the rule of periodical attenuation of Al(OH) 3 particles was investigated by laboratory experiments under simulated industrial conditions.The results show that at higher temperature the variation period of particle size is shortened,while prolongs with more solid content.Particle size fluctuation amplitude reduces with the temperature rising but increases with the solid content increasing.Particle size distribution becomes more uniform by replenishing fine seeds,enabling the periodical fluctuation of Al(OH)3 particle size to be attenuated.Combining properly the additives with controlling the seed size is able to reduce the amplitude of periodical fluctuation and shorten the attenuation time.With unbalance of particle size distribution,the particles gradually become bigger,even inducing the decrease of the specific surface area of seeds,which is the major reason causing explosive attenuation of Al(OH)3 particles in seed precipitation process.
基金Projects(11304243,11102164)supported by the National Natural Science Foundation of ChinaProject(2014JQ1039)supported by the Natural Science Foundation of Shannxi Province,China+3 种基金Project(12JK0966)supported by the Shaanxi Provincial Education Department,ChinaProject(2013QDJ037)supported by the Xi’an University of Science and Technology Dr Scientific Research Fund,ChinaProject(3102016ZY027)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(13GH014602)supported by the Program of New Staff and Research Area Project of NPU,China
文摘This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.