Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesi...Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.展开更多
The coal-to-ethanol process,as the clean coal utilization,faces challenges from the energy-intensive distillation that separates multi-component effluents for pure ethanol.Referring to at least eight columns,the synth...The coal-to-ethanol process,as the clean coal utilization,faces challenges from the energy-intensive distillation that separates multi-component effluents for pure ethanol.Referring to at least eight columns,the synthesis of the ethanol distillation system is impracticable for exhaustive comparison and difficult for conventional superstructure-based optimization as rigorous models are used.This work adopts a superstructure-based framework,which combines the strategy that adaptively selects branches of the state-equipment network and the parallel stochastic algorithm for process synthesis.High-performance computing significantly reduces time consumption,and the adaptive strategy substantially lowers the complexity of the superstructure model.Moreover,parallel computing,elite search,population redistribution,and retention strategies for irrelevant parameters are used to improve the optimization efficiency further.The optimization terminates after 3000 generations,providing a flowsheet solution that applies two non-sharp splitting options in its distillation sequence.As a result,the 59-dimension superstructure-based optimization was solved efficiently via a differential evolution algorithm,and a high-quality solution with a 28.34%lower total annual cost than the benchmark was obtained.Meanwhile,the solution of the superstructure-based optimization is comparable to that obtained by optimizing a single specific configuration one by one.It indicates that the superstructure-based optimization that combines the adaptive strategy can be a promising approach to handling the process synthesis of large-scale and complex chemical processes.展开更多
CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of Ce...CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.展开更多
This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hy...This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
A catalyst consisting of platinum nanoparticles on a ZIF-8 support(Pt@ZIF-8) was synthesized in a straightforward one-step procedure,by adding a nanostructured platinum sol during the formation of ZIF-8 at room temp...A catalyst consisting of platinum nanoparticles on a ZIF-8 support(Pt@ZIF-8) was synthesized in a straightforward one-step procedure,by adding a nanostructured platinum sol during the formation of ZIF-8 at room temperature.Pt@ZIF-8 was highly porous and well crystallized.The Pt nanoparticles were well dispersed within the ZIF-8 support.In the hydrogenation of 1,4-butynediol,Pt@ZIF-8 exhibited high activity,excellent selectivity for 1,4-butenediol of greater than 94%,and reusability.The Pt@ZIF-8 catalyst did not require further additives.The favorable catalytic performance was attributed primarily to the modification of the ZIF-8 support by the platinum nanoparticles.展开更多
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes...Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.展开更多
ε-Caprolactam(CL or CPL) is one of the most important intermediates used in polymer industry for the production of several million tons of nylon-6 every year^[1]. All current commercial processes for the production...ε-Caprolactam(CL or CPL) is one of the most important intermediates used in polymer industry for the production of several million tons of nylon-6 every year^[1]. All current commercial processes for the production of caprolactam are based on either benzene or tolueneI21. Caprolactam is synthesized by the Beckmann rearrangement of cyclohexanone oxime with fuming sulfuric acid or sulfuric acid as the reaction medium, and cyclohexanone oxime is produced by the reaction between cyclohexanone and hydro- xylamine(only one exception is the Toray PNC process).展开更多
Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composi...Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.展开更多
A novel process for catalytic oxidation of methane to synthesis gas (syngas), which consists of two consecutive fixed-bed reactors with air introduced into the reactors, integrated Fischer-Tropsch synthesis, was inves...A novel process for catalytic oxidation of methane to synthesis gas (syngas), which consists of two consecutive fixed-bed reactors with air introduced into the reactors, integrated Fischer-Tropsch synthesis, was investigated. At the same time, a catalytic combustion technology has been investigated for utilizing the F-T offgas to generate heat or power energy. The results show that the two-stage fixed reactor process keep away from explosion of CH4/O2. The integrated process is fitted to produce diesel oil and lubricating oil in remote gas field.展开更多
A predictive parallel search algorithm,the fuzzy match inference strategy,is implemented ina prototype expert system.Selection of separation technologies and sequencing of separators are beingapproached in an integrat...A predictive parallel search algorithm,the fuzzy match inference strategy,is implemented ina prototype expert system.Selection of separation technologies and sequencing of separators are beingapproached in an integrated manner.The fuzzy match mechanism results in a relatively smaller subsetof favored schemes,constituting a hyperstructure for further quantitative evaluation and combinationoptimization.An industrial application example of aromatics extraction separation is presented.展开更多
Potassium bismuth titanate nanosized powders were prepared by the hydrothermal method using Ti(C_4H_9O)_4 and Bi(NO_3)_3·5H_2O as raw materials in alkaline solution.The phase composition,particle size and morphol...Potassium bismuth titanate nanosized powders were prepared by the hydrothermal method using Ti(C_4H_9O)_4 and Bi(NO_3)_3·5H_2O as raw materials in alkaline solution.The phase composition,particle size and morphology of the powders were studied by XRD and TEM analysis.The results showed that the powders were well crystallized and dispersed.The crystal phase of the powders was K_(0.5)Bi_(0.5)TiO_3 with the grain size of about 50 nm~100 nm.Hydrothermal temperature and alkaline concentrations had great effects on the phase composition and morphology of the resultant powders.Pure K_(0.5)Bi_(0.5)TiO_3 powders could be synthesized at 170℃~180℃with KOH concentration of 8 mol/L~12 mol/L.展开更多
An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through...An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through the optimized synthesis in which the mixture of tetraethyl orthosilicate (TEOS) and ethanol was followed by the addition of water and ammonium hydroxide (NH3) separately, and the size of silica sol spheres was strictly controlled in the range of 25-119 nm with a narrow size distribution by fine adjustment of several reaction parameters. Results showed that in the presence of low concentration of TEOS, spheres size rose first and reached maximum when H2O concentration was up to 66 g/L. However, the diameter of silica sol spheres decreased above 66 g/L of H2O concentration. Furthermore, it was also found that the size and size distribution of silica sol nanospheres were affected by NH3 concentration. As NH3 concentration increased from 15 to 35 g/L, the diameter declined from 83 to 64 nm. Nevertheless, higher NH3 concentration would result in relatively broad size distribution, and gelation occurred when NH3 concentration reached 44 g/L. In addition, the effect of the different feed rates ofNH3 on the size growth of silica sol nanospheres was also discussed.展开更多
The reaction process of combustion synthesis for TiB2 -Cu was investigated in detail using combustion-wave arresting experiment, X-ray diffraction ( XRD ) analysis, SEM analysis and differential thermal analysis ( ...The reaction process of combustion synthesis for TiB2 -Cu was investigated in detail using combustion-wave arresting experiment, X-ray diffraction ( XRD ) analysis, SEM analysis and differential thermal analysis ( DTA ). The XRD analysis results for the different parts of the quenched specimen show that TiCux intermetallic phase firstly forms with the propagation of combustion wave, and then Ti1.87 B50 and Ti3B4 metastable phases come forth due to the diffusion of B atoms and finally the stable TiB2 phase forms because of the continuous diffusion of B atoms. The formation of TiB2 phase is uot completed by one step, but undergoes several transient processes. The process of reaction synthesis for Ti-B-Cu ternary system can be divided into three main stages: melting of Cu and Ti , and the formation of Cu- Ti melt and few TiCux , TiBx intermetallic phases ; large numbers of TiCux intermetallic phases formation and some fine TiB2 particles precipitation ; and the TiB2 particles coarsening and the stable TiB2 and Cu two phases formation in the final product.展开更多
Triangular-pyramidal ω-Bi2O3 is successfully synthesized via a one-step wet-chemical method.XRD,SEM,and UV-vis have been employed to characterize the as-prepared samples.Structural characterization by XRD confirms th...Triangular-pyramidal ω-Bi2O3 is successfully synthesized via a one-step wet-chemical method.XRD,SEM,and UV-vis have been employed to characterize the as-prepared samples.Structural characterization by XRD confirms the formation of triclinic ω-Bi2O3 with high purity.The well-defined flowerlike Bi2O3 structures consisted of many triangular-pyramids are formed.Preparative parameters,such as concentration of PEG 6000,have great effects on the morphology and the particle size.The obvious absorption edge for ω-Bi2O3 powder is located at about 493 nm,which corresponds to the optical band gap energy of2.73 eV.展开更多
Metal clusters RCCo_3(CO)_9(R-H,C1,Br,CH_3,Ph) were prepared in 18.8-57.3% yields from the reaction of cobalt(Ⅱ)salt and RCX_a under mild PTC conditions(latm CO,25℃).The cobalt salt was reduced to Co(CO)_4 in the pr...Metal clusters RCCo_3(CO)_9(R-H,C1,Br,CH_3,Ph) were prepared in 18.8-57.3% yields from the reaction of cobalt(Ⅱ)salt and RCX_a under mild PTC conditions(latm CO,25℃).The cobalt salt was reduced to Co(CO)_4 in the presence of Na_3S_2O_4.展开更多
Two classes of inorganic materials such as metallic nanowires and metal oxides nanorods were synthesized using the polyol process and scaled-up to produce macroscopic quantities. Scale-up strategy was successfully bui...Two classes of inorganic materials such as metallic nanowires and metal oxides nanorods were synthesized using the polyol process and scaled-up to produce macroscopic quantities. Scale-up strategy was successfully built by performing the synthesis in a 15 cm diameter, 4.5 litersvolume cylindrical tank using a straight paddle impeller and a Rushton turbine. The actual yield of the synthesis is ~45 grams per batch for zinc oxide nanorods and ~20 grams per batch for cobalt nickel nanowires. Under the same rotation speed, the aspect ratio of the produced nanowires and nanorods using the Rushton turbine impeller with radial flow patterns has shown a lower aspect ratio, nanoparticle size and polydispersity. This is attributed to the increase of the local dissipated energy as spatially calculated by computational fluid dynamics (CFD) that is proposed to design, optimize and scale-up the polyol process.展开更多
In conventional heterogeneous catalytic process, the activation of C-H bond remains a grand challenge. It is even more difficult to activate the inert C-H bond with other functional groups (e.g. OH) in the same mole...In conventional heterogeneous catalytic process, the activation of C-H bond remains a grand challenge. It is even more difficult to activate the inert C-H bond with other functional groups (e.g. OH) in the same molecule, remaining intact [1]. Although the transformation of C1 species (e.g. CO, CO2, CH4 and CH3OH) into C2 molecules (e.g. C2H4, C2HsOH and HOCH2CH2OH) via C-C coupling has been a hot research topic but the yield of aimed product is still needed to be improved. Ethylene glycol (EG) is a versatile chemical with many important applications, in particular for the manufacture of polyesters, predominantly poly(ethylene terephthalate) [2]. Recently, Wang, Deng and co-workers at Xiamen University cleverly designed a new process for the conversion of methanol to ethylene glycol, in which the EG selectivity can reach 90% (Eq. (1)) [3].展开更多
A new synthesis method of difenoconazole is studied.Difenoconazole is prepared from m-dichlorobenzene by Friedel Crafts reaction,cyclization,bromination,nucleophilic substitution and etherification.The new process imp...A new synthesis method of difenoconazole is studied.Difenoconazole is prepared from m-dichlorobenzene by Friedel Crafts reaction,cyclization,bromination,nucleophilic substitution and etherification.The new process improves the selectivity of the reaction and simplified the pu-rification process.The total yield of this process is 84%,which provides a green and economical synthetic route for industrialization.展开更多
The mechanism of scaling on the oxidation reactor wall in TiO2 synthesis process was investigated. The formation of wall scale is mostly due to being deposited and sintered of TiO2 particle formed in the gas phase rea...The mechanism of scaling on the oxidation reactor wall in TiO2 synthesis process was investigated. The formation of wall scale is mostly due to being deposited and sintered of TiO2 particle formed in the gas phase reaction of TiCl4 with O2. The gas-phase oxidation of TiCl4 was in a high temperature tubular flow reactor with quartz and ceramic rods put in center respectively. Scale layers are formed on reactor wall and two rods. Morphology and phase composition of them were characterized by transmission electron microscope(TEM), scan electron micrographs(SEM) and X-ray diffraction(XRD). The state of reactor wall has a little effect on scaling formation. With uneven temperature distribution along axial of reactor, the higher the reaction temperature is,the thicker the scale layer and the more compact the scale structure is.展开更多
基金the Science and Technology Planning Project of Guangdong Province(2016B090934002)Guangdong Provincial Natural Science Foundation(2023A1515011640)for financial support.
文摘Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.
文摘The coal-to-ethanol process,as the clean coal utilization,faces challenges from the energy-intensive distillation that separates multi-component effluents for pure ethanol.Referring to at least eight columns,the synthesis of the ethanol distillation system is impracticable for exhaustive comparison and difficult for conventional superstructure-based optimization as rigorous models are used.This work adopts a superstructure-based framework,which combines the strategy that adaptively selects branches of the state-equipment network and the parallel stochastic algorithm for process synthesis.High-performance computing significantly reduces time consumption,and the adaptive strategy substantially lowers the complexity of the superstructure model.Moreover,parallel computing,elite search,population redistribution,and retention strategies for irrelevant parameters are used to improve the optimization efficiency further.The optimization terminates after 3000 generations,providing a flowsheet solution that applies two non-sharp splitting options in its distillation sequence.As a result,the 59-dimension superstructure-based optimization was solved efficiently via a differential evolution algorithm,and a high-quality solution with a 28.34%lower total annual cost than the benchmark was obtained.Meanwhile,the solution of the superstructure-based optimization is comparable to that obtained by optimizing a single specific configuration one by one.It indicates that the superstructure-based optimization that combines the adaptive strategy can be a promising approach to handling the process synthesis of large-scale and complex chemical processes.
基金Supported by the National Natural Science Foundation of China(51204179,51204182,51674256)The Natural Science Foundation of Jiangsu Province,China(BK20141242)
文摘CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.
基金supported by the National Natural Science Foundation of China (51374004,51204083)the Candidate Talents Training Fund of Yun-nan Province (2012HB009,2014HB006)+2 种基金the Applied Basic Research Program of Yunnan Province (2014FB123)a School-Enterprise Cooperation Project from Jinchuan Corporation (Jinchuan 201115)the Talents Training Program of Kunming University of Science and Technology (KKZ3201352038)~~
文摘This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金supported by the National Natural Science Foundation of China(21573031 and 21428301)the Fundamental Research Funds for the Central Universities(DUT15ZD106 and DUT15RC(4)09)~~
文摘A catalyst consisting of platinum nanoparticles on a ZIF-8 support(Pt@ZIF-8) was synthesized in a straightforward one-step procedure,by adding a nanostructured platinum sol during the formation of ZIF-8 at room temperature.Pt@ZIF-8 was highly porous and well crystallized.The Pt nanoparticles were well dispersed within the ZIF-8 support.In the hydrogenation of 1,4-butynediol,Pt@ZIF-8 exhibited high activity,excellent selectivity for 1,4-butenediol of greater than 94%,and reusability.The Pt@ZIF-8 catalyst did not require further additives.The favorable catalytic performance was attributed primarily to the modification of the ZIF-8 support by the platinum nanoparticles.
文摘Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.
基金Supported by the National Natural Science Foundation of China(Nos 20233040 and 20572021)
文摘ε-Caprolactam(CL or CPL) is one of the most important intermediates used in polymer industry for the production of several million tons of nylon-6 every year^[1]. All current commercial processes for the production of caprolactam are based on either benzene or tolueneI21. Caprolactam is synthesized by the Beckmann rearrangement of cyclohexanone oxime with fuming sulfuric acid or sulfuric acid as the reaction medium, and cyclohexanone oxime is produced by the reaction between cyclohexanone and hydro- xylamine(only one exception is the Toray PNC process).
基金Funded by the National Natural Science of China(No.2012BAA05B06)
文摘Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.
基金Supported by the Major State Basic Research Projects of the Ministry of Science and Technology of China (G1999022402).
文摘A novel process for catalytic oxidation of methane to synthesis gas (syngas), which consists of two consecutive fixed-bed reactors with air introduced into the reactors, integrated Fischer-Tropsch synthesis, was investigated. At the same time, a catalytic combustion technology has been investigated for utilizing the F-T offgas to generate heat or power energy. The results show that the two-stage fixed reactor process keep away from explosion of CH4/O2. The integrated process is fitted to produce diesel oil and lubricating oil in remote gas field.
基金Supported in parts by the National Natural Science Foundation of China, the state Commission of Education of China
文摘A predictive parallel search algorithm,the fuzzy match inference strategy,is implemented ina prototype expert system.Selection of separation technologies and sequencing of separators are beingapproached in an integrated manner.The fuzzy match mechanism results in a relatively smaller subsetof favored schemes,constituting a hyperstructure for further quantitative evaluation and combinationoptimization.An industrial application example of aromatics extraction separation is presented.
文摘Potassium bismuth titanate nanosized powders were prepared by the hydrothermal method using Ti(C_4H_9O)_4 and Bi(NO_3)_3·5H_2O as raw materials in alkaline solution.The phase composition,particle size and morphology of the powders were studied by XRD and TEM analysis.The results showed that the powders were well crystallized and dispersed.The crystal phase of the powders was K_(0.5)Bi_(0.5)TiO_3 with the grain size of about 50 nm~100 nm.Hydrothermal temperature and alkaline concentrations had great effects on the phase composition and morphology of the resultant powders.Pure K_(0.5)Bi_(0.5)TiO_3 powders could be synthesized at 170℃~180℃with KOH concentration of 8 mol/L~12 mol/L.
基金Funded by the Guangdong Well-Silicasol Company Limited,China
文摘An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through the optimized synthesis in which the mixture of tetraethyl orthosilicate (TEOS) and ethanol was followed by the addition of water and ammonium hydroxide (NH3) separately, and the size of silica sol spheres was strictly controlled in the range of 25-119 nm with a narrow size distribution by fine adjustment of several reaction parameters. Results showed that in the presence of low concentration of TEOS, spheres size rose first and reached maximum when H2O concentration was up to 66 g/L. However, the diameter of silica sol spheres decreased above 66 g/L of H2O concentration. Furthermore, it was also found that the size and size distribution of silica sol nanospheres were affected by NH3 concentration. As NH3 concentration increased from 15 to 35 g/L, the diameter declined from 83 to 64 nm. Nevertheless, higher NH3 concentration would result in relatively broad size distribution, and gelation occurred when NH3 concentration reached 44 g/L. In addition, the effect of the different feed rates ofNH3 on the size growth of silica sol nanospheres was also discussed.
基金Funded bythe Aerospace Innovation Fundation andthe ResearchFund by the Doctoral Program of High Education ( No.20020213037)
文摘The reaction process of combustion synthesis for TiB2 -Cu was investigated in detail using combustion-wave arresting experiment, X-ray diffraction ( XRD ) analysis, SEM analysis and differential thermal analysis ( DTA ). The XRD analysis results for the different parts of the quenched specimen show that TiCux intermetallic phase firstly forms with the propagation of combustion wave, and then Ti1.87 B50 and Ti3B4 metastable phases come forth due to the diffusion of B atoms and finally the stable TiB2 phase forms because of the continuous diffusion of B atoms. The formation of TiB2 phase is uot completed by one step, but undergoes several transient processes. The process of reaction synthesis for Ti-B-Cu ternary system can be divided into three main stages: melting of Cu and Ti , and the formation of Cu- Ti melt and few TiCux , TiBx intermetallic phases ; large numbers of TiCux intermetallic phases formation and some fine TiB2 particles precipitation ; and the TiB2 particles coarsening and the stable TiB2 and Cu two phases formation in the final product.
基金Funded by Changzhou Science and Technology Innovation Project(No.CC20130033)Jiangsu Province Key Laboratory of Fine Petrochemical Industry
文摘Triangular-pyramidal ω-Bi2O3 is successfully synthesized via a one-step wet-chemical method.XRD,SEM,and UV-vis have been employed to characterize the as-prepared samples.Structural characterization by XRD confirms the formation of triclinic ω-Bi2O3 with high purity.The well-defined flowerlike Bi2O3 structures consisted of many triangular-pyramids are formed.Preparative parameters,such as concentration of PEG 6000,have great effects on the morphology and the particle size.The obvious absorption edge for ω-Bi2O3 powder is located at about 493 nm,which corresponds to the optical band gap energy of2.73 eV.
文摘Metal clusters RCCo_3(CO)_9(R-H,C1,Br,CH_3,Ph) were prepared in 18.8-57.3% yields from the reaction of cobalt(Ⅱ)salt and RCX_a under mild PTC conditions(latm CO,25℃).The cobalt salt was reduced to Co(CO)_4 in the presence of Na_3S_2O_4.
文摘Two classes of inorganic materials such as metallic nanowires and metal oxides nanorods were synthesized using the polyol process and scaled-up to produce macroscopic quantities. Scale-up strategy was successfully built by performing the synthesis in a 15 cm diameter, 4.5 litersvolume cylindrical tank using a straight paddle impeller and a Rushton turbine. The actual yield of the synthesis is ~45 grams per batch for zinc oxide nanorods and ~20 grams per batch for cobalt nickel nanowires. Under the same rotation speed, the aspect ratio of the produced nanowires and nanorods using the Rushton turbine impeller with radial flow patterns has shown a lower aspect ratio, nanoparticle size and polydispersity. This is attributed to the increase of the local dissipated energy as spatially calculated by computational fluid dynamics (CFD) that is proposed to design, optimize and scale-up the polyol process.
文摘In conventional heterogeneous catalytic process, the activation of C-H bond remains a grand challenge. It is even more difficult to activate the inert C-H bond with other functional groups (e.g. OH) in the same molecule, remaining intact [1]. Although the transformation of C1 species (e.g. CO, CO2, CH4 and CH3OH) into C2 molecules (e.g. C2H4, C2HsOH and HOCH2CH2OH) via C-C coupling has been a hot research topic but the yield of aimed product is still needed to be improved. Ethylene glycol (EG) is a versatile chemical with many important applications, in particular for the manufacture of polyesters, predominantly poly(ethylene terephthalate) [2]. Recently, Wang, Deng and co-workers at Xiamen University cleverly designed a new process for the conversion of methanol to ethylene glycol, in which the EG selectivity can reach 90% (Eq. (1)) [3].
文摘A new synthesis method of difenoconazole is studied.Difenoconazole is prepared from m-dichlorobenzene by Friedel Crafts reaction,cyclization,bromination,nucleophilic substitution and etherification.The new process improves the selectivity of the reaction and simplified the pu-rification process.The total yield of this process is 84%,which provides a green and economical synthetic route for industrialization.
文摘The mechanism of scaling on the oxidation reactor wall in TiO2 synthesis process was investigated. The formation of wall scale is mostly due to being deposited and sintered of TiO2 particle formed in the gas phase reaction of TiCl4 with O2. The gas-phase oxidation of TiCl4 was in a high temperature tubular flow reactor with quartz and ceramic rods put in center respectively. Scale layers are formed on reactor wall and two rods. Morphology and phase composition of them were characterized by transmission electron microscope(TEM), scan electron micrographs(SEM) and X-ray diffraction(XRD). The state of reactor wall has a little effect on scaling formation. With uneven temperature distribution along axial of reactor, the higher the reaction temperature is,the thicker the scale layer and the more compact the scale structure is.