The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper propo...The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.展开更多
Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface a...Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China's station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China's most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China.展开更多
A maximum test in lieu of forcing a choice between the two dependent samples t-test and Wilcoxon signed-ranks test is proposed. The maximum test, which requires a new table of critical values, maintains nominal α whi...A maximum test in lieu of forcing a choice between the two dependent samples t-test and Wilcoxon signed-ranks test is proposed. The maximum test, which requires a new table of critical values, maintains nominal α while guaranteeing the maximum power of the two constituent tests. Critical values, obtained via Monte Carlo methods, are uniformly smaller than the Bonferroni-Dunn adjustment, giving it power superiority when testing for treatment alternatives of shift in location parameter when data are sampled from non-normal distributions.展开更多
Depending on the numerical test approach on a computer, the relationships among relevant parameters, eg branch number, node number, mesh number, computation accuracy, preliminary value of airflow rate, iteration numbe...Depending on the numerical test approach on a computer, the relationships among relevant parameters, eg branch number, node number, mesh number, computation accuracy, preliminary value of airflow rate, iteration number, computation time and convergence in a mine ventilation network analysis, were investigated based on 5 mine ventilation systems. The results show that a higher computation accuracy greatly influences the iteration number. When the accuracy reaches 10-6m3·s-1 for solving a complicated mine ventilation network, the running time is too long though a high-speed computer is used. The preliminary value of airflow rate in the range of 1100m3·s-1 has little effects the iteration number. The structure of network also has some effect on the iteration number.展开更多
To investigate the attitude-switching mechanisms of existing jet slotters,which integrate drilling,punching and slotting operations,and to improve its fracture ability,we used the power bond diagram theory to analyse ...To investigate the attitude-switching mechanisms of existing jet slotters,which integrate drilling,punching and slotting operations,and to improve its fracture ability,we used the power bond diagram theory to analyse the dynamic flow pressure,and force of slotters.A mathematical model was developed for the dynamic characteristics of slotter systems.Furthermore,to study the effect of the main characteristic parameters on the ability of the nozzle to erode sandstone,multi-orthogonal experiments were carried out.And the optimised slots were applied in later practical operations.The research results show that the inlet fluid passed through the time-varying orifice to generate pressure differential thrust,which overcame the spring force,pushed the valve core to open the side nozzle,and closed the rear cavity channel thereby realising the switch of the slotter attitude.An optimal plan was established to balance the diameter,depth,and volume of punching,and a rock-breaking plan was developed for the slotter.Subsequently,the optimised water jet slotter was practically used in coal seam gas drainage.Compared with conventional dense drilling,water jet slotting technology significantly improves the ability,efficiency,and effect of increasing the permeability of the coal seam.展开更多
The reliability of the automobile seat angle-adjuster directly affects the safety of vehicle. The reliability of the seat angle-adjuster is improved based on bench test. Liability model of seat angle-adjuster system i...The reliability of the automobile seat angle-adjuster directly affects the safety of vehicle. The reliability of the seat angle-adjuster is improved based on bench test. Liability model of seat angle-adjuster system is established according to seat angle-adjuster of key parts failure mode. That provides technical support for the design improvements of seat angle-adjuster.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51375212,61601203)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions of China+1 种基金Key Research and Development Program of Jiangsu Province(BE2016149)Jiangsu Provincial Natural Science Foundation of China(BK20140555)
文摘The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.
文摘Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China's station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China's most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China.
文摘A maximum test in lieu of forcing a choice between the two dependent samples t-test and Wilcoxon signed-ranks test is proposed. The maximum test, which requires a new table of critical values, maintains nominal α while guaranteeing the maximum power of the two constituent tests. Critical values, obtained via Monte Carlo methods, are uniformly smaller than the Bonferroni-Dunn adjustment, giving it power superiority when testing for treatment alternatives of shift in location parameter when data are sampled from non-normal distributions.
基金Project (50474050) supported by the National Natural Science Foundation of China
文摘Depending on the numerical test approach on a computer, the relationships among relevant parameters, eg branch number, node number, mesh number, computation accuracy, preliminary value of airflow rate, iteration number, computation time and convergence in a mine ventilation network analysis, were investigated based on 5 mine ventilation systems. The results show that a higher computation accuracy greatly influences the iteration number. When the accuracy reaches 10-6m3·s-1 for solving a complicated mine ventilation network, the running time is too long though a high-speed computer is used. The preliminary value of airflow rate in the range of 1100m3·s-1 has little effects the iteration number. The structure of network also has some effect on the iteration number.
基金supported by the National Natural Science Foundation Outstanding Youth Fund(No.51625401)the Chongqing Natural Science Foundation(No.cstc2018jcyjAX0542)the Program for Changjiang Scholars and Innovative Research Team in Chongqing University(No.IRT17R112).
文摘To investigate the attitude-switching mechanisms of existing jet slotters,which integrate drilling,punching and slotting operations,and to improve its fracture ability,we used the power bond diagram theory to analyse the dynamic flow pressure,and force of slotters.A mathematical model was developed for the dynamic characteristics of slotter systems.Furthermore,to study the effect of the main characteristic parameters on the ability of the nozzle to erode sandstone,multi-orthogonal experiments were carried out.And the optimised slots were applied in later practical operations.The research results show that the inlet fluid passed through the time-varying orifice to generate pressure differential thrust,which overcame the spring force,pushed the valve core to open the side nozzle,and closed the rear cavity channel thereby realising the switch of the slotter attitude.An optimal plan was established to balance the diameter,depth,and volume of punching,and a rock-breaking plan was developed for the slotter.Subsequently,the optimised water jet slotter was practically used in coal seam gas drainage.Compared with conventional dense drilling,water jet slotting technology significantly improves the ability,efficiency,and effect of increasing the permeability of the coal seam.
文摘The reliability of the automobile seat angle-adjuster directly affects the safety of vehicle. The reliability of the seat angle-adjuster is improved based on bench test. Liability model of seat angle-adjuster system is established according to seat angle-adjuster of key parts failure mode. That provides technical support for the design improvements of seat angle-adjuster.