Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introdu...Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introduce a monitoring method capable of non-contact original-state online real-time monitoring for strongly coated, high-salinity, and multi-component liquids. The principle of the method is to establish the relationship among the concentration of the target substance in the liquid (C), the color space coor- dinates of the target substance at different concentrations (L*, a*, b*), and the maximum absorption wave- length (λmax); subsequently, the optimum wavelength λT of the liquid is determined by a high-precision scanning-type monitoring system that is used to detect the instantaneous concentration of the target substance in the flowing liquid. Unlike traditional monitoring methods and existing online monitoring methods, the proposed method does not require any pretreatment of the samples (i.e., filtration, dilution, oxidation/reduction, addition of chromogenic agent, constant volume, etc.), and it is capable of original- state online real-time monitoring. This method is employed at a large electrolytic manganese plant to monitor the Fe3. concentration in the colloidal process of the plant's aging liquid (where the concentra- tions of Fe3+, Mn2+, and (NH4)2SO4 are 0.5-18 mg.L 1, 35-39 g.L 1, and 90-110 g.L 1, respectively). The relative error of this monitoring method compared with an off-line laboratory monitoring is less than 2%.展开更多
为实现火电机组按需吹灰,采用Visual Studio 2015开发工具及MySQL数据库管理系统,基于B/S架构设计并搭建了火电机组受热面在线积灰监测及吹灰优化系统平台并且成功在某600MW机组实现。该系统实现了实时在线监测锅炉各级受热面的积灰状态...为实现火电机组按需吹灰,采用Visual Studio 2015开发工具及MySQL数据库管理系统,基于B/S架构设计并搭建了火电机组受热面在线积灰监测及吹灰优化系统平台并且成功在某600MW机组实现。该系统实现了实时在线监测锅炉各级受热面的积灰状态,进而通过吹灰优化模型给出吹灰建议,为电厂运行人员提供运行指导与参考。展开更多
Changes in trace substances in human metabolites, which are related to disease processes and health status, can serve as chemical markers for disease diagnosis and symptom monitoring. Real-time online detection is an ...Changes in trace substances in human metabolites, which are related to disease processes and health status, can serve as chemical markers for disease diagnosis and symptom monitoring. Real-time online detection is an inevitable trend for the future of health monitoring, and the construction of chips for detection faces major challenges. The response of sensors often fails to meet the requirements for chipbased detection of trace substances due to the low efficiency of interfacial heterogeneous reactions, necessitating a rational design approach for micro-and nano-structures to improve sensor performance with respect to sensitivity and detection limits. This review focuses on the influence of micro-and nanostructures that used in chip on sensing. Firstly, this review categorizes sensors into chemiresistors, electrochemical sensors, fluorescence sensors, and surface enhanced Raman scattering(SERS) sensors based on their sensing principle, which have significant applications in disease diagnosis. Subsequently, commencing from the application requirements in the field of sensing, this review focuses on the different structures of nanoparticle(NP) assemblies, including wire, layered, core-shell, hollow, concave and deformable structures. These structures change in the size, shape, and morphology of conventional structures to achieve characteristics such as ordered alignment, high specific surface area, space limitation,vertical diffusion, and swaying behavior with fluid, thereby addressing issues such as poor signal transmission efficiency, inadequate adsorption and capture capacity, and slow mass transfer speed during sensing. Finally, the design direction of micro-and nano-structures, and possible obstacles and solutions to promote chip-based detection have been discussed. It is hope that this article will inspire the exploration of interface micro-and nano-structures modulated sensing methods.展开更多
文摘Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introduce a monitoring method capable of non-contact original-state online real-time monitoring for strongly coated, high-salinity, and multi-component liquids. The principle of the method is to establish the relationship among the concentration of the target substance in the liquid (C), the color space coor- dinates of the target substance at different concentrations (L*, a*, b*), and the maximum absorption wave- length (λmax); subsequently, the optimum wavelength λT of the liquid is determined by a high-precision scanning-type monitoring system that is used to detect the instantaneous concentration of the target substance in the flowing liquid. Unlike traditional monitoring methods and existing online monitoring methods, the proposed method does not require any pretreatment of the samples (i.e., filtration, dilution, oxidation/reduction, addition of chromogenic agent, constant volume, etc.), and it is capable of original- state online real-time monitoring. This method is employed at a large electrolytic manganese plant to monitor the Fe3. concentration in the colloidal process of the plant's aging liquid (where the concentra- tions of Fe3+, Mn2+, and (NH4)2SO4 are 0.5-18 mg.L 1, 35-39 g.L 1, and 90-110 g.L 1, respectively). The relative error of this monitoring method compared with an off-line laboratory monitoring is less than 2%.
文摘为实现火电机组按需吹灰,采用Visual Studio 2015开发工具及MySQL数据库管理系统,基于B/S架构设计并搭建了火电机组受热面在线积灰监测及吹灰优化系统平台并且成功在某600MW机组实现。该系统实现了实时在线监测锅炉各级受热面的积灰状态,进而通过吹灰优化模型给出吹灰建议,为电厂运行人员提供运行指导与参考。
基金financially supported by the National Natural Science Foundation of China (No.21925405)。
文摘Changes in trace substances in human metabolites, which are related to disease processes and health status, can serve as chemical markers for disease diagnosis and symptom monitoring. Real-time online detection is an inevitable trend for the future of health monitoring, and the construction of chips for detection faces major challenges. The response of sensors often fails to meet the requirements for chipbased detection of trace substances due to the low efficiency of interfacial heterogeneous reactions, necessitating a rational design approach for micro-and nano-structures to improve sensor performance with respect to sensitivity and detection limits. This review focuses on the influence of micro-and nanostructures that used in chip on sensing. Firstly, this review categorizes sensors into chemiresistors, electrochemical sensors, fluorescence sensors, and surface enhanced Raman scattering(SERS) sensors based on their sensing principle, which have significant applications in disease diagnosis. Subsequently, commencing from the application requirements in the field of sensing, this review focuses on the different structures of nanoparticle(NP) assemblies, including wire, layered, core-shell, hollow, concave and deformable structures. These structures change in the size, shape, and morphology of conventional structures to achieve characteristics such as ordered alignment, high specific surface area, space limitation,vertical diffusion, and swaying behavior with fluid, thereby addressing issues such as poor signal transmission efficiency, inadequate adsorption and capture capacity, and slow mass transfer speed during sensing. Finally, the design direction of micro-and nano-structures, and possible obstacles and solutions to promote chip-based detection have been discussed. It is hope that this article will inspire the exploration of interface micro-and nano-structures modulated sensing methods.