The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is sprea...The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.展开更多
We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment....We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro=mechanisms of network growth and the macrostructures of online social networks.展开更多
Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the beha...Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the behavioral data are noisy because users often clicked some irrelevant documents to find their required information,and the new user cold start issue represents a serious problem,greatly reducing the performance of personalized search.This paper attempts to utilize online social network data to obtain user preferences that can be used to personalize search results,mine the knowledge of user interests,user influence and user relationships from online social networks,and use this knowledge to optimize the results returned by search engines.The proposed model is based on a holonic multiagent system that improves the adaptability and scalability of the model.The experimental results show that utilizing online social network data to implement personalized search is feasible and that online social network data are significant for personalized search.展开更多
Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now ...Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now increasingly leveraging online social networks for highlighting events happening around the world via the Internet of People.In this paper,a novel Event Detection model based on Scoring and Word Embedding(ED-SWE)is proposed for discovering key events from a large volume of data streams of tweets and for generating an event summary using keywords and top-k tweets.The proposed ED-SWE model can distill high-quality tweets,reduce the negative impact of the advent of spam,and identify latent events in the data streams automatically.Moreover,a word embedding algorithm is used to learn a real-valued vector representation for a predefined fixed-sized vocabulary from a corpus of Twitter data.In order to further improve the performance of the Expectation-Maximization(EM)iteration algorithm,a novel initialization method based on the authority values of the tweets is also proposed in this paper to detect live events efficiently and precisely.Finally,a novel automatic identification method based on the cosine measure is used to automatically evaluate whether a given topic can form a live event.Experiments conducted on a real-world dataset demonstrate that the ED-SWE model exhibits better efficiency and accuracy than several state-of-art event detection models.展开更多
Background:During the early stages of the COVID-19 pandemic in China,social interactions shifted to online spaces due to lockdowns and social distancing measures.As a result,the impact of online social networking on u...Background:During the early stages of the COVID-19 pandemic in China,social interactions shifted to online spaces due to lockdowns and social distancing measures.As a result,the impact of online social networking on users’emotional status has become stronger than ever.This study examines the association between online social networking and Internet users’emotional status and how offline reality affects this relationship.Methods:The study utilizes cross-sectional online survey data(n=3004)and Baidu Migration big data from the first 3 months of the pandemic.Two dimensions of online networking are measured:social support and information sources.Results:First,individuals’online social support(β=0.16,p<0.05)and information sources(β=0.08,p<0.01)are both positively associated to their emotional status during the epidemic.Second,these positive associations are moderated by social status and provincial pandemic control interventions.With regards to the moderation effect of social status,the constructive impact of information sources on emotional well-being is more pronounced among individuals from vulnerable groups compared to those who are not.With regard to the moderation effect of provincial interventions,online social support has the potential to alleviate the adverse repercussions of high rates of confirmed COVID-19 cases and strict lockdown measures while simultaneously augmenting the favorable effects of recovery.Conclusion:The various dimensions of social networking exert distinct effects on emotional status through diverse mechanisms,all of which must be taken into account when designing and adapting pandemic-control interventions.展开更多
With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the us...With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the users and inject massive malicious activities that pose a crucial security threat to the original user.However,the attackers also target this height of OSN utilization,explicitly creating the clones of the user’s account.Various clone detection mechanisms are designed based on social-network activities.For instance,monitoring the occur-rence of clone edges is done to restrict the generation of clone activities.However,this assumption is unsuitable for a real-time environment and works optimally during the simulation process.This research concentrates on modeling and effi-cient clone prediction and avoidance methods to help the social network activists and the victims enhance the clone prediction accuracy.This model does not rely on assumptions.Here,an ensemble Adaptive Random Subspace is used for clas-sifying the clone victims with k-Nearest Neighbour(k-NN)as a base classifier.The weighted clone nodes are analysed using the weighted graph theory concept based on the classified results.When the weighted node’s threshold value is high-er,the trust establishment is terminated,and the clones are ranked and sorted in the higher place for termination.Thus,the victims are alert to the clone propaga-tion over the online social networking end,and the validation is done using the MATLAB 2020a simulation environment.The model shows a better trade-off than existing approaches like Random Forest(RF),Naïve Bayes(NB),and the standard graph model.Various performance metrics like True Positive Rate(TPR),False Alarm Rate(FAR),Recall,Precision,F-measure,and ROC and run time analysis are evaluated to show the significance of the model.展开更多
Information networks where users join a network, publish their own content, and create links to other users are called Online Social Networks (OSNs). Nowadays, OSNs have become one of the major platforms to promote bo...Information networks where users join a network, publish their own content, and create links to other users are called Online Social Networks (OSNs). Nowadays, OSNs have become one of the major platforms to promote both new and viral applications as well as disseminate information. Social network analysis is the study of these information networks that leads to uncovering patterns of interaction among the entities. In this regard, finding influential users in OSNs is very important as they play a key role in the success above phenomena. Various approaches exist to detect influential users in OSNs, starting from simply counting the immediate neighbors to more complex machine-learning and message-passing techniques. In this paper, we review the recent existing research works that focused on identifying influential users in OSNs.展开更多
Online social network is increasingly showing a significant impact and role in many areas of social life. In the study of online social network related issues have become the consensus of the academic and industrial c...Online social network is increasingly showing a significant impact and role in many areas of social life. In the study of online social network related issues have become the consensus of the academic and industrial communities and the urgent need for. This paper mainly studies the problem of information dissemination in social network, the mode of communication, behavior, propagation paths and propagation characteristics are studied, and take the Tencent micro-blog as an example, based on the analysis of many examples, several main models and characteristics of information dissemination in social network platform.展开更多
The rapid development of online social network has attracted a lot of research attention. On online social network, people can discuss their ideas, express their interests and opinions, all of which are demonstrated b...The rapid development of online social network has attracted a lot of research attention. On online social network, people can discuss their ideas, express their interests and opinions, all of which are demonstrated by information propagation. So how to model the information propagation cascade accurately has become a hot topic. In this paper, we firstly incorporate the retweet probability into the traditional propagation models. To find the accurate retweet probability, we introduce the logistic regression model for every user based on the extracted features. With the crawled real dataset, simulation is conducted on the real online social network and moreover some novel results have been obtained. The homogenous retweet probability in the original model has underestimated the speed of information propagation, despite the scale of information propagation is almost at the same level. Besides, the initial information poster is really important for a certain propagation, which enables us to make effective strategies to prevent epidemics of rumor on social network.展开更多
This paper is devoted to analyze and model user reading and replying activities in a bulletin board system (BBS) social network. By analyzing the data set from a famous Chinese BBS social network, we show how some u...This paper is devoted to analyze and model user reading and replying activities in a bulletin board system (BBS) social network. By analyzing the data set from a famous Chinese BBS social network, we show how some user activities distribute, and reveal several important features that might characterize user dynamics. We propose a method to model user activities in the BBS social network. The model could reproduce power-law and non-power-law distributions of user activities at the same time. Our results show that user reading and replying activities could be simulated through simple agent-based models. Specifically, manners of how the BBS server interacts with Internet users in the Web 2.0 application, how users organize their reading lists, and how user behavioral trait distributes are the important factors in the formation of activity patterns.展开更多
The AIDS epidemic has affected every aspect of Zambian society and is recognized as the greatest public health challenge of the past 30 years. Nevertheless, education can generate hope in the face of the epidemic usin...The AIDS epidemic has affected every aspect of Zambian society and is recognized as the greatest public health challenge of the past 30 years. Nevertheless, education can generate hope in the face of the epidemic using different methods, including social networks. This article investigates the positive and negative impacts of social networks on the spread of HIV at the University of Zambia (UNZA). The research study included survey-based oral interviews with 280 UNZA students. During the course of the study, we realized that efforts have been and are being put in place at UNZA to use online social networks to spread news about HIV and AIDS and how to stop its transmission. Findings showed that most participants felt that social networks hastened the spread of the virus among social media users. Despite social networks having a few positive effects, the results of our study indicate that the negative effects far outweigh the positive effects.展开更多
Political discussions are characterized by conflicts of interest, and decisions are made based on negotiations. In general, participants need to reinforce their opinions and influence other participants. In this conte...Political discussions are characterized by conflicts of interest, and decisions are made based on negotiations. In general, participants need to reinforce their opinions and influence other participants. In this context, it is important to know how allies and opponents are positioned, in order to understand the discussion dynamics and plan adequate actions. This paper suggests the use of social network visualizations to explicit oppositions and alliances in order to support the understanding and following of political discussions. A system which supports these visualizations was built. An experiment performed to test the proposed visualizations showed to which extent they can be more efficient in identifying information about clashes and alliances than an online discussion system can.展开更多
In social data analytics,Virtual Community(VC)detection is a primary challenge in discovering user relationships and enhancing social recommenda-tions.VC formation is used for personal interaction between communities....In social data analytics,Virtual Community(VC)detection is a primary challenge in discovering user relationships and enhancing social recommenda-tions.VC formation is used for personal interaction between communities.But the usual methods didn’t find the Suspicious Behaviour(SB)needed to make a VC.The Generalized Jaccard Suspicious Behavior Similarity-based Recurrent Deep Neural Network Classification and Ranking(GJSBS-RDNNCR)Model addresses these issues.The GJSBS-RDNNCR model comprises four layers for VC formation in Social Networks(SN).In the GJSBS-RDNNCR model,the SN is given as an input at the input layer.After that,the User’s Behaviors(UB)are extracted in the first Hidden Layer(HL),and the Generalized Jaccard Similarity coefficient calculates the similarity value at the second HL based on the SB.In the third HL,the similarity values are examined,and SB tendency is classified using the Activation Function(AF)in the Output Layer(OL).Finally,the ranking process is performed with classified users in SN and their SB.Results analysis is performed with metrics such as Classification Accuracy(CA),Time Complexity(TC),and False Positive Rate(FPR).The experimental setup consid-ers 250 tweet users from the dataset to identify the SBs of users.展开更多
The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for id...The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for identifying sentiment in OSNs such as communication pattern mining and classification based on emoticon and parts of speech, the majority of them utilize a suboptimal batch mode learning approach when analyzing a large amount of real time data. As an alternative we present a stream algorithm using Modified Balanced Winnow for sentiment analysis on OSNs. Tested on three real-world network datasets, the performance of our sentiment predictions is close to that of batch learning with the ability to detect important features dynamically for sentiment analysis in data streams. These top features reveal key words important to the analysis of sentiment.展开更多
Recent developments on Internet and social networking have led to the growth of aggressive language and hate speech.Online provocation,abuses,and attacks are widely termed cyberbullying(CB).The massive quantity of use...Recent developments on Internet and social networking have led to the growth of aggressive language and hate speech.Online provocation,abuses,and attacks are widely termed cyberbullying(CB).The massive quantity of user generated content makes it difficult to recognize CB.Current advancements in machine learning(ML),deep learning(DL),and natural language processing(NLP)tools enable to detect and classify CB in social networks.In this view,this study introduces a spotted hyena optimizer with deep learning driven cybersecurity(SHODLCS)model for OSN.The presented SHODLCS model intends to accomplish cybersecurity from the identification of CB in the OSN.For achieving this,the SHODLCS model involves data pre-processing and TF-IDF based feature extraction.In addition,the cascaded recurrent neural network(CRNN)model is applied for the identification and classification of CB.Finally,the SHO algorithm is exploited to optimally tune the hyperparameters involved in the CRNN model and thereby results in enhanced classifier performance.The experimental validation of the SHODLCS model on the benchmark dataset portrayed the better outcomes of the SHODLCS model over the recent approaches.展开更多
This paper investigates the social networks usage by students in Abidjan city, Côte d’Ivoire. We focus on a descriptive or quantitative analysis to understand the motivations and how students make use of in...This paper investigates the social networks usage by students in Abidjan city, Côte d’Ivoire. We focus on a descriptive or quantitative analysis to understand the motivations and how students make use of internet and social networks. More than six hundred forms were distributed to persons we have deemed as students. In return, we received more than 93% of the forms that have been processed. The study highlights the materials and the digital platforms that students used the most. The majority of the respondents reported to have access to the social networks in their mobile phones, with WhatsApp leading this application ranking, followed by Instagram, Facebook, YouTube, and Tik Tok. The survey shows that two third of our respondents are aged from 19 to 25 years old and almost half of the respondents spend daily 2 to 5 hours on digital platforms. The investigation also reveals that the main online activities are the e-commerce, chatting, information, and entertainment. The paper addresses also the online harassment of the students and it shows that more than one tenth of them have been victims of cyber-bullying. This study might be useful for governments, institutions, academia, individuals and professionals in order to communicate efficiently with a given population for a better use of social networks and to prevent students from harassment.展开更多
Web 2.0-based online communities and social networking platforms in particular enable users to create their own content, share this content with anyone they invite and organize connections with existing or new online ...Web 2.0-based online communities and social networking platforms in particular enable users to create their own content, share this content with anyone they invite and organize connections with existing or new online contacts. The underlying processes are self-directed and represent a valuable source for creativity and innovation---especially outside firms' boundaries. The basis for the authors' research in progress is a framework which focuses on the relations between intrinsic motivation, creativity and Web 2.0-based online communities or social networking platforms. First results of the authors' exploratory empirical investigation of a specific social networking platform suggest that the authors' two propositions are valid.展开更多
Critical functionality and huge infuence of the hot trend/topic page(HTP)in microblogging sites have driven the creation of a new kind of underground service called the bogus traffic service(BTS).BTS provides a kind o...Critical functionality and huge infuence of the hot trend/topic page(HTP)in microblogging sites have driven the creation of a new kind of underground service called the bogus traffic service(BTS).BTS provides a kind of illegal service which hijacks the HTP by pushing the controlled topics into it for malicious customers with the goal of guiding public opinions.To hijack HTP,the agents of BTS maintain an army of black-market accounts called bogus trafic accounts(BTAs)and control BTAs to generate a burst of fake trafic by massively retweeting the tweets containing the customer desired topic(hashtag).Although this service has been extensively exploited by malicious customers,little has been done to understand it.In this paper,we conduct a systematic measurement study of the BTS.We first investigate and collect 125 BTS agents from a variety of sources and set up a honey pot account to capture BTAs from these agents.We then build a BTA detector that detects 162218 BTAs from Weibo,the largest Chinese microblogging site,with a precision of 94.5%.We further use them as a bridge to uncover 296916 topics that might be involved in bogus trafic.Finally,we uncover the operating mechanism from the perspectives of the attack cycle and the attack entity.The highlights of our findings include the temporal attack patterns and intelligent evasion tactics of the BTAs.These findings bring BTS into the spotlight.Our work will help in understanding and ultimately eliminating this threat.展开更多
基金supported by the National Social Science Fund of China (Grant No.23BGL270)。
文摘The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61104139,70871082,and 71101053)the ECUST for Excellent Young Scientists,China
文摘We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro=mechanisms of network growth and the macrostructures of online social networks.
基金supported by the National Natural Science Foundation of China (61972300, 61672401, 61373045, and 61902288,)the Pre-Research Project of the “Thirteenth Five-Year-Plan” of China (315***10101 and 315**0102)
文摘Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the behavioral data are noisy because users often clicked some irrelevant documents to find their required information,and the new user cold start issue represents a serious problem,greatly reducing the performance of personalized search.This paper attempts to utilize online social network data to obtain user preferences that can be used to personalize search results,mine the knowledge of user interests,user influence and user relationships from online social networks,and use this knowledge to optimize the results returned by search engines.The proposed model is based on a holonic multiagent system that improves the adaptability and scalability of the model.The experimental results show that utilizing online social network data to implement personalized search is feasible and that online social network data are significant for personalized search.
基金The work reported in this paper has been supported by UK-Jiangsu 20-20 World Class University Initiative programme.
文摘Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now increasingly leveraging online social networks for highlighting events happening around the world via the Internet of People.In this paper,a novel Event Detection model based on Scoring and Word Embedding(ED-SWE)is proposed for discovering key events from a large volume of data streams of tweets and for generating an event summary using keywords and top-k tweets.The proposed ED-SWE model can distill high-quality tweets,reduce the negative impact of the advent of spam,and identify latent events in the data streams automatically.Moreover,a word embedding algorithm is used to learn a real-valued vector representation for a predefined fixed-sized vocabulary from a corpus of Twitter data.In order to further improve the performance of the Expectation-Maximization(EM)iteration algorithm,a novel initialization method based on the authority values of the tweets is also proposed in this paper to detect live events efficiently and precisely.Finally,a novel automatic identification method based on the cosine measure is used to automatically evaluate whether a given topic can form a live event.Experiments conducted on a real-world dataset demonstrate that the ED-SWE model exhibits better efficiency and accuracy than several state-of-art event detection models.
基金This research was funded by“the Fundamental Research Funds for the Central Universities,Grant Number XJSJ23180”,https://www.xidian.edu.cn/index.htmand“Shaanxi Province Philosophy and Social Science Research Project,Grant Number 2023QN0046”,http://www.sxsskw.org.cn/.
文摘Background:During the early stages of the COVID-19 pandemic in China,social interactions shifted to online spaces due to lockdowns and social distancing measures.As a result,the impact of online social networking on users’emotional status has become stronger than ever.This study examines the association between online social networking and Internet users’emotional status and how offline reality affects this relationship.Methods:The study utilizes cross-sectional online survey data(n=3004)and Baidu Migration big data from the first 3 months of the pandemic.Two dimensions of online networking are measured:social support and information sources.Results:First,individuals’online social support(β=0.16,p<0.05)and information sources(β=0.08,p<0.01)are both positively associated to their emotional status during the epidemic.Second,these positive associations are moderated by social status and provincial pandemic control interventions.With regards to the moderation effect of social status,the constructive impact of information sources on emotional well-being is more pronounced among individuals from vulnerable groups compared to those who are not.With regard to the moderation effect of provincial interventions,online social support has the potential to alleviate the adverse repercussions of high rates of confirmed COVID-19 cases and strict lockdown measures while simultaneously augmenting the favorable effects of recovery.Conclusion:The various dimensions of social networking exert distinct effects on emotional status through diverse mechanisms,all of which must be taken into account when designing and adapting pandemic-control interventions.
文摘With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the users and inject massive malicious activities that pose a crucial security threat to the original user.However,the attackers also target this height of OSN utilization,explicitly creating the clones of the user’s account.Various clone detection mechanisms are designed based on social-network activities.For instance,monitoring the occur-rence of clone edges is done to restrict the generation of clone activities.However,this assumption is unsuitable for a real-time environment and works optimally during the simulation process.This research concentrates on modeling and effi-cient clone prediction and avoidance methods to help the social network activists and the victims enhance the clone prediction accuracy.This model does not rely on assumptions.Here,an ensemble Adaptive Random Subspace is used for clas-sifying the clone victims with k-Nearest Neighbour(k-NN)as a base classifier.The weighted clone nodes are analysed using the weighted graph theory concept based on the classified results.When the weighted node’s threshold value is high-er,the trust establishment is terminated,and the clones are ranked and sorted in the higher place for termination.Thus,the victims are alert to the clone propaga-tion over the online social networking end,and the validation is done using the MATLAB 2020a simulation environment.The model shows a better trade-off than existing approaches like Random Forest(RF),Naïve Bayes(NB),and the standard graph model.Various performance metrics like True Positive Rate(TPR),False Alarm Rate(FAR),Recall,Precision,F-measure,and ROC and run time analysis are evaluated to show the significance of the model.
文摘Information networks where users join a network, publish their own content, and create links to other users are called Online Social Networks (OSNs). Nowadays, OSNs have become one of the major platforms to promote both new and viral applications as well as disseminate information. Social network analysis is the study of these information networks that leads to uncovering patterns of interaction among the entities. In this regard, finding influential users in OSNs is very important as they play a key role in the success above phenomena. Various approaches exist to detect influential users in OSNs, starting from simply counting the immediate neighbors to more complex machine-learning and message-passing techniques. In this paper, we review the recent existing research works that focused on identifying influential users in OSNs.
文摘Online social network is increasingly showing a significant impact and role in many areas of social life. In the study of online social network related issues have become the consensus of the academic and industrial communities and the urgent need for. This paper mainly studies the problem of information dissemination in social network, the mode of communication, behavior, propagation paths and propagation characteristics are studied, and take the Tencent micro-blog as an example, based on the analysis of many examples, several main models and characteristics of information dissemination in social network platform.
基金The work was jointly supported by the National Natural Science Foundations of China under grant No. 61472302,61272280,41271447, and 61272195The Program for New Century Excellent Talents in University under grant No. NCET-12-0919+2 种基金 The Fundamental Research Funds for the Central Universities under grant No.K5051203020,K5051303016,K5051303018, BDY081422, and K50513100006 Natural Science Foundation of Shaanxi Province, under grant No.2014JM8310The Creative Project of the Science and Technology State of xi’an under grant No. CXY1341(6).
文摘The rapid development of online social network has attracted a lot of research attention. On online social network, people can discuss their ideas, express their interests and opinions, all of which are demonstrated by information propagation. So how to model the information propagation cascade accurately has become a hot topic. In this paper, we firstly incorporate the retweet probability into the traditional propagation models. To find the accurate retweet probability, we introduce the logistic regression model for every user based on the extracted features. With the crawled real dataset, simulation is conducted on the real online social network and moreover some novel results have been obtained. The homogenous retweet probability in the original model has underestimated the speed of information propagation, despite the scale of information propagation is almost at the same level. Besides, the initial information poster is really important for a certain propagation, which enables us to make effective strategies to prevent epidemics of rumor on social network.
基金supported in part by the National Natural Science Foundation of China under Grant No. 60972010the Beijing Natural Science Foundation under Grant No. 4102047+1 种基金the Major Program for Research on Philosophy & Humanity Social Sciences of the Ministry of Education of China under Grant No. 08WL1101the Service Business of Scientists and Engineers Project under Grant No. 2009GJA00048
文摘This paper is devoted to analyze and model user reading and replying activities in a bulletin board system (BBS) social network. By analyzing the data set from a famous Chinese BBS social network, we show how some user activities distribute, and reveal several important features that might characterize user dynamics. We propose a method to model user activities in the BBS social network. The model could reproduce power-law and non-power-law distributions of user activities at the same time. Our results show that user reading and replying activities could be simulated through simple agent-based models. Specifically, manners of how the BBS server interacts with Internet users in the Web 2.0 application, how users organize their reading lists, and how user behavioral trait distributes are the important factors in the formation of activity patterns.
文摘The AIDS epidemic has affected every aspect of Zambian society and is recognized as the greatest public health challenge of the past 30 years. Nevertheless, education can generate hope in the face of the epidemic using different methods, including social networks. This article investigates the positive and negative impacts of social networks on the spread of HIV at the University of Zambia (UNZA). The research study included survey-based oral interviews with 280 UNZA students. During the course of the study, we realized that efforts have been and are being put in place at UNZA to use online social networks to spread news about HIV and AIDS and how to stop its transmission. Findings showed that most participants felt that social networks hastened the spread of the virus among social media users. Despite social networks having a few positive effects, the results of our study indicate that the negative effects far outweigh the positive effects.
文摘Political discussions are characterized by conflicts of interest, and decisions are made based on negotiations. In general, participants need to reinforce their opinions and influence other participants. In this context, it is important to know how allies and opponents are positioned, in order to understand the discussion dynamics and plan adequate actions. This paper suggests the use of social network visualizations to explicit oppositions and alliances in order to support the understanding and following of political discussions. A system which supports these visualizations was built. An experiment performed to test the proposed visualizations showed to which extent they can be more efficient in identifying information about clashes and alliances than an online discussion system can.
文摘In social data analytics,Virtual Community(VC)detection is a primary challenge in discovering user relationships and enhancing social recommenda-tions.VC formation is used for personal interaction between communities.But the usual methods didn’t find the Suspicious Behaviour(SB)needed to make a VC.The Generalized Jaccard Suspicious Behavior Similarity-based Recurrent Deep Neural Network Classification and Ranking(GJSBS-RDNNCR)Model addresses these issues.The GJSBS-RDNNCR model comprises four layers for VC formation in Social Networks(SN).In the GJSBS-RDNNCR model,the SN is given as an input at the input layer.After that,the User’s Behaviors(UB)are extracted in the first Hidden Layer(HL),and the Generalized Jaccard Similarity coefficient calculates the similarity value at the second HL based on the SB.In the third HL,the similarity values are examined,and SB tendency is classified using the Activation Function(AF)in the Output Layer(OL).Finally,the ranking process is performed with classified users in SN and their SB.Results analysis is performed with metrics such as Classification Accuracy(CA),Time Complexity(TC),and False Positive Rate(FPR).The experimental setup consid-ers 250 tweet users from the dataset to identify the SBs of users.
文摘The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for identifying sentiment in OSNs such as communication pattern mining and classification based on emoticon and parts of speech, the majority of them utilize a suboptimal batch mode learning approach when analyzing a large amount of real time data. As an alternative we present a stream algorithm using Modified Balanced Winnow for sentiment analysis on OSNs. Tested on three real-world network datasets, the performance of our sentiment predictions is close to that of batch learning with the ability to detect important features dynamically for sentiment analysis in data streams. These top features reveal key words important to the analysis of sentiment.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R140)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4310373DSR15.
文摘Recent developments on Internet and social networking have led to the growth of aggressive language and hate speech.Online provocation,abuses,and attacks are widely termed cyberbullying(CB).The massive quantity of user generated content makes it difficult to recognize CB.Current advancements in machine learning(ML),deep learning(DL),and natural language processing(NLP)tools enable to detect and classify CB in social networks.In this view,this study introduces a spotted hyena optimizer with deep learning driven cybersecurity(SHODLCS)model for OSN.The presented SHODLCS model intends to accomplish cybersecurity from the identification of CB in the OSN.For achieving this,the SHODLCS model involves data pre-processing and TF-IDF based feature extraction.In addition,the cascaded recurrent neural network(CRNN)model is applied for the identification and classification of CB.Finally,the SHO algorithm is exploited to optimally tune the hyperparameters involved in the CRNN model and thereby results in enhanced classifier performance.The experimental validation of the SHODLCS model on the benchmark dataset portrayed the better outcomes of the SHODLCS model over the recent approaches.
文摘This paper investigates the social networks usage by students in Abidjan city, Côte d’Ivoire. We focus on a descriptive or quantitative analysis to understand the motivations and how students make use of internet and social networks. More than six hundred forms were distributed to persons we have deemed as students. In return, we received more than 93% of the forms that have been processed. The study highlights the materials and the digital platforms that students used the most. The majority of the respondents reported to have access to the social networks in their mobile phones, with WhatsApp leading this application ranking, followed by Instagram, Facebook, YouTube, and Tik Tok. The survey shows that two third of our respondents are aged from 19 to 25 years old and almost half of the respondents spend daily 2 to 5 hours on digital platforms. The investigation also reveals that the main online activities are the e-commerce, chatting, information, and entertainment. The paper addresses also the online harassment of the students and it shows that more than one tenth of them have been victims of cyber-bullying. This study might be useful for governments, institutions, academia, individuals and professionals in order to communicate efficiently with a given population for a better use of social networks and to prevent students from harassment.
文摘Web 2.0-based online communities and social networking platforms in particular enable users to create their own content, share this content with anyone they invite and organize connections with existing or new online contacts. The underlying processes are self-directed and represent a valuable source for creativity and innovation---especially outside firms' boundaries. The basis for the authors' research in progress is a framework which focuses on the relations between intrinsic motivation, creativity and Web 2.0-based online communities or social networking platforms. First results of the authors' exploratory empirical investigation of a specific social networking platform suggest that the authors' two propositions are valid.
文摘Critical functionality and huge infuence of the hot trend/topic page(HTP)in microblogging sites have driven the creation of a new kind of underground service called the bogus traffic service(BTS).BTS provides a kind of illegal service which hijacks the HTP by pushing the controlled topics into it for malicious customers with the goal of guiding public opinions.To hijack HTP,the agents of BTS maintain an army of black-market accounts called bogus trafic accounts(BTAs)and control BTAs to generate a burst of fake trafic by massively retweeting the tweets containing the customer desired topic(hashtag).Although this service has been extensively exploited by malicious customers,little has been done to understand it.In this paper,we conduct a systematic measurement study of the BTS.We first investigate and collect 125 BTS agents from a variety of sources and set up a honey pot account to capture BTAs from these agents.We then build a BTA detector that detects 162218 BTAs from Weibo,the largest Chinese microblogging site,with a precision of 94.5%.We further use them as a bridge to uncover 296916 topics that might be involved in bogus trafic.Finally,we uncover the operating mechanism from the perspectives of the attack cycle and the attack entity.The highlights of our findings include the temporal attack patterns and intelligent evasion tactics of the BTAs.These findings bring BTS into the spotlight.Our work will help in understanding and ultimately eliminating this threat.