期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deep Learning Empowered Cybersecurity Spam Bot Detection for Online Social Networks 被引量:2
1
作者 Mesfer Al Duhayyim Haya Mesfer Alshahrani +3 位作者 Fahd NAl-Wesabi Mohammed Alamgeer Anwer Mustafa Hilal Mohammed Rizwanullah 《Computers, Materials & Continua》 SCIE EI 2022年第3期6257-6270,共14页
Cybersecurity encompasses various elements such as strategies,policies,processes,and techniques to accomplish availability,confidentiality,and integrity of resource processing,network,software,and data from attacks.In... Cybersecurity encompasses various elements such as strategies,policies,processes,and techniques to accomplish availability,confidentiality,and integrity of resource processing,network,software,and data from attacks.In this scenario,the rising popularity of Online Social Networks(OSN)is under threat from spammers for which effective spam bot detection approaches should be developed.Earlier studies have developed different approaches for the detection of spam bots in OSN.But those techniques primarily concentrated on hand-crafted features to capture the features of malicious users while the application of Deep Learning(DL)models needs to be explored.With this motivation,the current research article proposes a Spam Bot Detection technique using Hybrid DL model abbreviated as SBDHDL.The proposed SBD-HDL technique focuses on the detection of spam bots that exist in OSNs.The technique has different stages of operations such as pre-processing,classification,and parameter optimization.Besides,SBD-HDL technique hybridizes Graph Convolutional Network(GCN)with Recurrent Neural Network(RNN)model for spam bot classification process.In order to enhance the detection performance of GCN-RNN model,hyperparameters are tuned using Lion Optimization Algorithm(LOA).Both hybridization of GCN-RNN and LOA-based hyperparameter tuning process make the current work,a first-of-its-kind in this domain.The experimental validation of the proposed SBD-HDL technique,conducted upon benchmark dataset,established the supremacy of the technique since it was validated under different measures. 展开更多
关键词 CYBERSECURITY spam bot data classification social networks twitter deep learning
下载PDF
Sentiment Analysis on the Social Networks Using Stream Algorithms
2
作者 Nathan Aston Timothy Munson +3 位作者 Jacob Liddle Garrett Hartshaw Dane Livingston Wei Hu 《Journal of Data Analysis and Information Processing》 2014年第2期60-66,共7页
The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for id... The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for identifying sentiment in OSNs such as communication pattern mining and classification based on emoticon and parts of speech, the majority of them utilize a suboptimal batch mode learning approach when analyzing a large amount of real time data. As an alternative we present a stream algorithm using Modified Balanced Winnow for sentiment analysis on OSNs. Tested on three real-world network datasets, the performance of our sentiment predictions is close to that of batch learning with the ability to detect important features dynamically for sentiment analysis in data streams. These top features reveal key words important to the analysis of sentiment. 展开更多
关键词 Modified BALANCED WINNOW SENTIMENT Analysis twitter online social networks Feature Selection data STREAMS
下载PDF
Twitter的Follow关系和Retweet关系对比 被引量:1
3
作者 曾雪 吴跃 《计算机应用研究》 CSCD 北大核心 2014年第1期192-195,共4页
研究Twitter在线社交网络中,Follow关系和Retweet关系在传播用户影响力和表征用户同质性这两方面的差异。为研究两者在传播用户影响力上的差异,定义了V f变量和V r变量分别度量Follow关系和Retweet关系的作用;为研究两者在表征用户同质... 研究Twitter在线社交网络中,Follow关系和Retweet关系在传播用户影响力和表征用户同质性这两方面的差异。为研究两者在传播用户影响力上的差异,定义了V f变量和V r变量分别度量Follow关系和Retweet关系的作用;为研究两者在表征用户同质性上的差异,分别基于Follow关系和Retweet关系构造出对应的社交网络图,并采用wvRN算法分别对两个网络内的用户进行分类。通过对比用户的V f变量值和V r变量值发现,Retweet关系在传播用户影响力方面的作用优于Follow关系;通过对比分类结果发现,Follow关系比Retweet关系更能表征用户的同质性,基于Follow关系的分类精度比基于Retweet关系的分类精度高20%,分类结果同时揭示不同类别的用户体现出了不同的关注和信息互动特性。基于上述研究说明Follow关系和Retweet关系所携带的信息是不同的。 展开更多
关键词 在线社交网络 网络数据分类 同质性 推特网
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部