For purpose of purification and enrichment, environmental samples usually need to be pretreated before analysis because of low concentration of residual organic matters. Solid-phase extraction (SPE) is one of the fr...For purpose of purification and enrichment, environmental samples usually need to be pretreated before analysis because of low concentration of residual organic matters. Solid-phase extraction (SPE) is one of the frequently used methods of pretreatment. This article introduces the methodological principle and flow channel of SPE as well as the categories of frequently used small extraction column, analyzes the application of online SPE technology in environmental analysis, generalizes the advantages of online SPE and sets forth its developmental trend.展开更多
Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(a...Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.展开更多
Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentra...Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentrated hydrochloric acid that was then used as a recycling and preconcentration reagent allowed the further uses of silica gel-loaded immobilized TEPDA phase. The application of this silica gel-loaded phase to sorption of a series of metal ions was performed by using different controlling factors such as the pH of the metal ion solution and the equilibration shaking time by the static technique. This difference was interpreted on the basis of selectivity incorporated in these sulfur containing silica gel-loaded TEPDA phases. Hg(Ⅱ) was found to exhibit the highest affinity towards extraction by these silica gel-loaded TEPDA phases. The pronounced selectivity was also confirmed by the determined distribution coefficients (Kd) of all the metal ions, showing the highest value reported for mercury(Ⅱ) extraction by the silica gel immobilized TEPDA phase. The potential applications of the silica gel immobilized TEPDA phase to selective extraction of mercury(Ⅱ) from aqueous solution were successfully accomplished and preconcentration of low concentration of Hg(Ⅱ) (30 pg·mL^-1) from natural tap water with a preconcentration factor of 200 for Hg(Ⅱ) off-line analysis was conducted by cold vapor atomic absorption analysis.展开更多
文摘For purpose of purification and enrichment, environmental samples usually need to be pretreated before analysis because of low concentration of residual organic matters. Solid-phase extraction (SPE) is one of the frequently used methods of pretreatment. This article introduces the methodological principle and flow channel of SPE as well as the categories of frequently used small extraction column, analyzes the application of online SPE technology in environmental analysis, generalizes the advantages of online SPE and sets forth its developmental trend.
文摘Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.
基金Project supported by the National Natural Science Foundation of China (No. 20271025), the Natural Science Foundation of Shandong Province (No. L2003B01) and the State Key Laboratory of Crystal Materials, Shandong University.
文摘Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentrated hydrochloric acid that was then used as a recycling and preconcentration reagent allowed the further uses of silica gel-loaded immobilized TEPDA phase. The application of this silica gel-loaded phase to sorption of a series of metal ions was performed by using different controlling factors such as the pH of the metal ion solution and the equilibration shaking time by the static technique. This difference was interpreted on the basis of selectivity incorporated in these sulfur containing silica gel-loaded TEPDA phases. Hg(Ⅱ) was found to exhibit the highest affinity towards extraction by these silica gel-loaded TEPDA phases. The pronounced selectivity was also confirmed by the determined distribution coefficients (Kd) of all the metal ions, showing the highest value reported for mercury(Ⅱ) extraction by the silica gel immobilized TEPDA phase. The potential applications of the silica gel immobilized TEPDA phase to selective extraction of mercury(Ⅱ) from aqueous solution were successfully accomplished and preconcentration of low concentration of Hg(Ⅱ) (30 pg·mL^-1) from natural tap water with a preconcentration factor of 200 for Hg(Ⅱ) off-line analysis was conducted by cold vapor atomic absorption analysis.