期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Explainable machine learning model for predicting molten steel temperature in the LF refining process
1
作者 Zicheng Xin Jiangshan Zhang +5 位作者 Kaixiang Peng Junguo Zhang Chunhui Zhang Jun Wu Bo Zhang Qing Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2657-2669,共13页
Accurate prediction of molten steel temperature in the ladle furnace(LF)refining process has an important influence on the quality of molten steel and the control of steelmaking cost.Extensive research on establishing... Accurate prediction of molten steel temperature in the ladle furnace(LF)refining process has an important influence on the quality of molten steel and the control of steelmaking cost.Extensive research on establishing models to predict molten steel temperature has been conducted.However,most researchers focus solely on improving the accuracy of the model,neglecting its explainability.The present study aims to develop a high-precision and explainable model with improved reliability and transparency.The eXtreme gradient boosting(XGBoost)and light gradient boosting machine(LGBM)were utilized,along with bayesian optimization and grey wolf optimiz-ation(GWO),to establish the prediction model.Different performance evaluation metrics and graphical representations were applied to compare the optimal XGBoost and LGBM models obtained through varying hyperparameter optimization methods with the other models.The findings indicated that the GWO-LGBM model outperformed other methods in predicting molten steel temperature,with a high pre-diction accuracy of 89.35%within the error range of±5°C.The model’s learning/decision process was revealed,and the influence degree of different variables on the molten steel temperature was clarified using the tree structure visualization and SHapley Additive exPlana-tions(SHAP)analysis.Consequently,the explainability of the optimal GWO-LGBM model was enhanced,providing reliable support for prediction results. 展开更多
关键词 ladle furnace refining molten steel temperature eXtreme gradient boosting light gradient boosting machine grey wolf op-timization SHapley Additive exPlanation
下载PDF
Energy Efficient Modelling of a Network
2
作者 Anish Kumar Saha Koj Sambyo Chandan Tilak Bhunia 《China Communications》 SCIE CSCD 2018年第1期107-117,共11页
Most of the networks are generally less energy efficient and most of the time resources are underutilized. Even resources of busy networks are also underutilized and thus networks show energy inefficient management sy... Most of the networks are generally less energy efficient and most of the time resources are underutilized. Even resources of busy networks are also underutilized and thus networks show energy inefficient management system. This paper focuses on how to obtain minimum resources for the current situation of the network to maintain connectivity, power saving and quality of service. Four different models are proposed in this perspective with different purposes and functions. These models determine the minimum resources under certain constrains. Two types of services namely, "minimum bandwidth" and "trivial file transfer" are considered. For "minimum bandwidth" service, minimum edge, minimum delay and minimum change models are proposed. Here data rate switch and enable/disable of edges are placed in these models for power saving strategy. Another model, multi flow is proposed for "trivial file transfer" service. It is proposed for transferring files through multiple flows in multiple paths from source to destination. All models except multi flow model are mixed integer programming optimization problem. 展开更多
关键词 energy efficient NETWORKING data rate SWITCH power SAVING state multipleflows MIXED INTEGER linear PROGRAMMING op-timization problem
下载PDF
Power Maximization and Control of Variable-Speed Wind Turbine System Using Extremum Seeking
3
作者 Safanah M. Rafaat Rajaa Hussein 《Journal of Power and Energy Engineering》 2018年第1期51-69,共19页
Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of tw... Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014. 展开更多
关键词 Wind Turbine Indirect Field Orientation CONTROL (IFOC) Maximum POWER Point Tracking (MPPT) Extremum SEEKING CONTROL (ESC) Particle SWARM op-timization (PSO) PI Controller
下载PDF
Remaining useful life prediction for train bearing based on an ILSTM network with adaptive hyperparameter optimization
4
作者 Deqiang He Jingren Yan +4 位作者 Zhenzhen Jin Xueyan Zou Sheng Shan Zaiyu Xiang Jian Miao 《Transportation Safety and Environment》 EI 2024年第2期75-86,共12页
Remaining useful life(RUL)prediction for bearing is a significant part of the maintenance of urban rail transit trains.Bearing RUL is closely linked to the reliability and safety of train running,but the current predi... Remaining useful life(RUL)prediction for bearing is a significant part of the maintenance of urban rail transit trains.Bearing RUL is closely linked to the reliability and safety of train running,but the current prediction accuracy makes it difficult to meet the re-quirements of high reliability operation.Aiming at the problem,a prediction model based on an improved long short-term memory(ILSTM)network is proposed.Firstly,the variational mode decomposition is used to process the signal,the intrinsic mode function with stronger representation ability is determined according to energy entropy and the degradation feature data is constructed com-bined with the time domain characteristics.Then,to improve learning ability,a rectified linear unit(ReLU)is applied to activate a fully connected layer lying after the long short-term memory(LSTM)network,and the hidden state outputs of the layer are weighted by attention mechanism.The Harris Hawks optimization algorithm is introduced to adaptively set the hyperparameters to improve the performance of the LSTM.Finally,the ILSTM is applied to predict bearing RUL.Through experimental cases,the better perfor-mance in bearing RUL prediction and the effectiveness of each improving measures of the model are validated,and its superiority of hyperparameters setting is demonstrated. 展开更多
关键词 train bearing remaining useful life prediction long short-term memory(LSTM) attention mechanism Harris Hawks op-timization(HHO)
原文传递
On convergence analysis of a derivative-free trust region algorithm for constrained optimization with separable structure 被引量:2
5
作者 XUE Dan SUN WenYu 《Science China Mathematics》 SCIE 2014年第6期1287-1302,共16页
In this paper,we propose a derivative-free trust region algorithm for constrained minimization problems with separable structure,where derivatives of the objective function are not available and cannot be directly app... In this paper,we propose a derivative-free trust region algorithm for constrained minimization problems with separable structure,where derivatives of the objective function are not available and cannot be directly approximated.At each iteration,we construct a quadratic interpolation model of the objective function around the current iterate.The new iterates are generated by minimizing the augmented Lagrangian function of this model over the trust region.The filter technique is used to ensure the feasibility and optimality of the iterative sequence.Global convergence of the proposed algorithm is proved under some suitable assumptions. 展开更多
关键词 constrained optimization derivative-free optimization multivariate interpolation separable op-timization global convergence
原文传递
ECG beat classification using particle swarm optimization and support vector machine 被引量:1
6
作者 Ali KHAZAEE A. E. ZADEH 《Frontiers of Computer Science》 SCIE EI CSCD 2014年第2期217-231,共15页
In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram's spectral and three tim... In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram's spectral and three timing inter- val features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. The proposed approach optimizes the relevant parameters of SVM classifier through an intelligent algorithm using parti- cle swarm optimization (PSO). These parameters are: Gaus- sian radial basis function (GRBF) kernel parameter o- and C penalty parameter of SVM classifier. ECG records from the MIT-BIH arrhythmia database are selected as test data. It is observed that the proposed power spectral-based hybrid par- ticle swarm optimization-support vector machine (SVMPSO) classification method offers significantly improved perfor- mance over the SVM which has constant and manually ex- tracted parameter. 展开更多
关键词 ECG arrhythmia classification SVM PSO op-timization PSD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部