Petri Nets (PNs) are an effective structure for modeling and analyzing asynchronous systems with concurrent and parallel activities. A Petri net models the static properties of a discrete event system concentrating on...Petri Nets (PNs) are an effective structure for modeling and analyzing asynchronous systems with concurrent and parallel activities. A Petri net models the static properties of a discrete event system concentrating on two basic concepts: events and conditions. Most of the theoretical work on Petri nets is a formal definition of Petri nets structures, which consist of a set of places, representing conditions, a set of transitions, representing events, an input function and an output function. For practical purposes, a graphical representation is more useful. Two types of nodes portray places and transitions. A circle is a place and a bar is a transition. There is no inherent measure of time in a classical Petri net. To approach time-based evaluation of system performances, Timed Petri Nets (TPNs) were introduced. Modeling the notion of time is not straightforward. There are several possibilities for introducing time in PNs, among them timed transitions and timed places. This paper reviews several published examples where Petri Nets were used in different circumstances such as estimating expected utilization of processing resources at steady state in open queueing networks, verifying computerized simulations and batch planning in textile industry.展开更多
文摘Petri Nets (PNs) are an effective structure for modeling and analyzing asynchronous systems with concurrent and parallel activities. A Petri net models the static properties of a discrete event system concentrating on two basic concepts: events and conditions. Most of the theoretical work on Petri nets is a formal definition of Petri nets structures, which consist of a set of places, representing conditions, a set of transitions, representing events, an input function and an output function. For practical purposes, a graphical representation is more useful. Two types of nodes portray places and transitions. A circle is a place and a bar is a transition. There is no inherent measure of time in a classical Petri net. To approach time-based evaluation of system performances, Timed Petri Nets (TPNs) were introduced. Modeling the notion of time is not straightforward. There are several possibilities for introducing time in PNs, among them timed transitions and timed places. This paper reviews several published examples where Petri Nets were used in different circumstances such as estimating expected utilization of processing resources at steady state in open queueing networks, verifying computerized simulations and batch planning in textile industry.