The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence char...The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.展开更多
For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy...For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.展开更多
The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and ban...The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01).展开更多
Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized co...Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.展开更多
The existence of vegetation plays an important role to protect the ecosystem and water environment in natural rivers and wetlands, but it alters the velocity field of flow, consequently influencing the transport of po...The existence of vegetation plays an important role to protect the ecosystem and water environment in natural rivers and wetlands, but it alters the velocity field of flow, consequently influencing the transport of pollutant and biomass. As a pre-requisite for the analysis of environmental capacity in a channel, the vertical velocity distribution of flows has attracted much research attention;however, there is yet lack of a good prediction model available. For the channel with submerged vegetation, the vertical velocity distribution in the lower vegetation layer will be different from that in the upper flow layer of non-vegetation. In this paper, after review on the most recent two-layer model proposed by Baptist et al., the author has proposed an improved two-layer analytical model by introducing a different mixing length scale (λ). The proposed model is based on the momentum equation of flow with the turbulent eddy viscosity assumed as a linear relationship with the local velocity. The proposed model is compared with the Baptist model for different datasets published in the literature, which shows that the proposed analytical model can improve the vertical velocity distribution prediction well compared with the Baptist model for a range of data. This study reveals that the λ is well related with the submergence of vegetation (H/h), as suggested by . When the constant β is taken as 3/100, the proposed model shows good agreement with a wide range of datasets studied: flow depth (H)/vegetation height (h) in 1.25 to 3.33, different vegetation densities of a in 1.1 to 18.5 m−1 (a defined as the frontal area of the vegetation per unit volume), and bed slopes in (1.38 - 4.0) × 10−3.展开更多
通信网络是输电线路在线监测系统的重要组成部分,关系到监测数据的完整性和安全性。由于现行通信网络在实际监测中的数据通信效果并不理想,吞吐量较低且丢包率较高,通信网络性能存在一定缺陷。为解决这一问题,文章提出基于5G的输电线路...通信网络是输电线路在线监测系统的重要组成部分,关系到监测数据的完整性和安全性。由于现行通信网络在实际监测中的数据通信效果并不理想,吞吐量较低且丢包率较高,通信网络性能存在一定缺陷。为解决这一问题,文章提出基于5G的输电线路在线监测通信网络设计。利用5G技术来设计输电线路在线监测的通信网络模型和信道,同时基于开放式系统互连(Open System Interconnect,OSI)参考模型来设计通信网络协议,从而完成基于5G的输电线路在线监测通信网络的整体设计。经实验验证,所设计的通信网络吞吐性能良好,丢包率在1%以下,输电线路在线监测通信效果良好。展开更多
Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the character...Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.展开更多
The self-aeration in open channel flows, called white waters, is a phenomenon seen in spillways and steep chutes. The air distribution in the flow is always an important and fundamental issue. The present study develo...The self-aeration in open channel flows, called white waters, is a phenomenon seen in spillways and steep chutes. The air distribution in the flow is always an important and fundamental issue. The present study develops a numerical model to predict the air concentration distribution in self-aerated open channel flows, by taking the air-water flow as consisting of a low flow region and an upper flow region. On the interface between the two regions, the air concentration is 0.5. In the low flow region where air concentration is lower than 0.5, air bubbles diffuse in the water flow by turbulent transport fluctuations, and in the upper region where air concentration is higher than 0.5, water droplets and free surface roughness diffuse in the air. The air concentration distributions obtained from the diffusion model are in good agreement with measured data both in the uniform equilibrium region and in the self-aerated developing region. It is demonstrated that the numerical model provides a reasonable description of the self-aeration region in open channel flows.展开更多
在保水堰井中,水流向上翻过保水堰进入堰井下游段,水流流线较弯曲.水流经过扩散进入下游有压箱涵段,下游有压箱涵入口段流速分布往往不均匀,需要经过一段距离才会恢复至比较均匀的状态.若流速分布均匀性太差会影响下游有压箱涵的入流....在保水堰井中,水流向上翻过保水堰进入堰井下游段,水流流线较弯曲.水流经过扩散进入下游有压箱涵段,下游有压箱涵入口段流速分布往往不均匀,需要经过一段距离才会恢复至比较均匀的状态.若流速分布均匀性太差会影响下游有压箱涵的入流.并且由于堰井段是水气两相流,堰后的水流旋滚可能会携气进入下游有压箱涵,对入流条件及管道安全运行非常不利.采用VOF模型(Volume of Fluid model)进行数值模拟的方法进行优化分析,结果表明:适当增加堰井下游段长度能较明显的改善水流流态及下游有压箱涵的入流情况.展开更多
文摘The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
文摘For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.
文摘The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01).
文摘Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.
文摘The existence of vegetation plays an important role to protect the ecosystem and water environment in natural rivers and wetlands, but it alters the velocity field of flow, consequently influencing the transport of pollutant and biomass. As a pre-requisite for the analysis of environmental capacity in a channel, the vertical velocity distribution of flows has attracted much research attention;however, there is yet lack of a good prediction model available. For the channel with submerged vegetation, the vertical velocity distribution in the lower vegetation layer will be different from that in the upper flow layer of non-vegetation. In this paper, after review on the most recent two-layer model proposed by Baptist et al., the author has proposed an improved two-layer analytical model by introducing a different mixing length scale (λ). The proposed model is based on the momentum equation of flow with the turbulent eddy viscosity assumed as a linear relationship with the local velocity. The proposed model is compared with the Baptist model for different datasets published in the literature, which shows that the proposed analytical model can improve the vertical velocity distribution prediction well compared with the Baptist model for a range of data. This study reveals that the λ is well related with the submergence of vegetation (H/h), as suggested by . When the constant β is taken as 3/100, the proposed model shows good agreement with a wide range of datasets studied: flow depth (H)/vegetation height (h) in 1.25 to 3.33, different vegetation densities of a in 1.1 to 18.5 m−1 (a defined as the frontal area of the vegetation per unit volume), and bed slopes in (1.38 - 4.0) × 10−3.
文摘通信网络是输电线路在线监测系统的重要组成部分,关系到监测数据的完整性和安全性。由于现行通信网络在实际监测中的数据通信效果并不理想,吞吐量较低且丢包率较高,通信网络性能存在一定缺陷。为解决这一问题,文章提出基于5G的输电线路在线监测通信网络设计。利用5G技术来设计输电线路在线监测的通信网络模型和信道,同时基于开放式系统互连(Open System Interconnect,OSI)参考模型来设计通信网络协议,从而完成基于5G的输电线路在线监测通信网络的整体设计。经实验验证,所设计的通信网络吞吐性能良好,丢包率在1%以下,输电线路在线监测通信效果良好。
文摘Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.
基金supported by the National Natural Science Foun-dation of China(Grant No.51179113)the Doctoral Program of China Education Ministry(Grant No.20120181110083)
文摘The self-aeration in open channel flows, called white waters, is a phenomenon seen in spillways and steep chutes. The air distribution in the flow is always an important and fundamental issue. The present study develops a numerical model to predict the air concentration distribution in self-aerated open channel flows, by taking the air-water flow as consisting of a low flow region and an upper flow region. On the interface between the two regions, the air concentration is 0.5. In the low flow region where air concentration is lower than 0.5, air bubbles diffuse in the water flow by turbulent transport fluctuations, and in the upper region where air concentration is higher than 0.5, water droplets and free surface roughness diffuse in the air. The air concentration distributions obtained from the diffusion model are in good agreement with measured data both in the uniform equilibrium region and in the self-aerated developing region. It is demonstrated that the numerical model provides a reasonable description of the self-aeration region in open channel flows.
文摘在保水堰井中,水流向上翻过保水堰进入堰井下游段,水流流线较弯曲.水流经过扩散进入下游有压箱涵段,下游有压箱涵入口段流速分布往往不均匀,需要经过一段距离才会恢复至比较均匀的状态.若流速分布均匀性太差会影响下游有压箱涵的入流.并且由于堰井段是水气两相流,堰后的水流旋滚可能会携气进入下游有压箱涵,对入流条件及管道安全运行非常不利.采用VOF模型(Volume of Fluid model)进行数值模拟的方法进行优化分析,结果表明:适当增加堰井下游段长度能较明显的改善水流流态及下游有压箱涵的入流情况.