Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under d...Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.展开更多
In this paper, a particle imaging velocimetry (PIV) system of high-temporal-spatial resolution is used to investigate the spanwise vortex distribution of fully developed turbulent flows in an open channel and its rela...In this paper, a particle imaging velocimetry (PIV) system of high-temporal-spatial resolution is used to investigate the spanwise vortex distribution of fully developed turbulent flows in an open channel and its relationship with the turbulence. The distributions of the time-averaged velocity, the turbulence intensity and the Reynolds stress are obtained in the longitudinal profile. The third-generation vortex identification method (based on the Omega-Liutex vector) is applied to accurately identify and analyze the vortex in the spanwise direction. The results suggest that the vortex density increases with the Reynolds number at a given aspect ratio (B / H) of the flow. The distribution trend of the spanwise vortex density in the vertical direction remains unchanged for different discharges. Specifically, the vortex density increases along the vertical direction and reaches the peak at y / H = 0.15, then decreases and reaches the bottoms at the flow surface.展开更多
This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV...This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV). Velocity vector plots and vorticity contours of the flow field on the upstream plane of symmetry (y = 0 cm) and on the planes :e3 cm away from the plane of symmetry Cv = ~3 cm) are presented. The vorticity and circulation of the horseshoe vortices were determined using the forward difference technique and Stokes theorem, respectively. The results show that the magnitudes of circulations are similar on the planes y = 3 cm and y = -3 cm, which are less than those on the plane y = 0 cm. The circulation decreases with the increase of flow shallowness, and increases with the densimetric Froude number. It also increases with the pier Reynolds number at a constant densimetric Froude number, or at a constant flow shallowness. The relative vortex strength (dimensionless circulation) decreases with the increase of the pier Reynolds number. Some empirical equations are proposed based on the results. The predicted circulation values with these equations match the measured data, which indicates that these equations can be used to estimate the circulation in future studies.展开更多
Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation (DNS). The objective of this study is to reveal the response of the n...Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation (DNS). The objective of this study is to reveal the response of the near-wall and surface-influenced turbulence to the spanwise traveling wave control. Three typical frequencies of the spanwise traveling wave, i.e., high-, middle- and low-frequency, corresponding to the exciting periods at 25, 50 and 100, are considered to study the turbulence dynamics in the wall and surface regions. To elucidate the behaviors of turbulence statistics, some typical quantities, including the mean velocity, velocity fluctuations and the structures of turbulence fluctuations, are exhibited and analyzed.展开更多
Pulsating turbulent open channel flow has been investigated by the use ofLarge Eddy Simulation (LES) tech-nique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulentSGS stress to closure the governing equation...Pulsating turbulent open channel flow has been investigated by the use ofLarge Eddy Simulation (LES) tech-nique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulentSGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equationsare numerically solved by a fractional — step method. The objective of this study is to deal withthe behavior of the pulsating turbulent open channel flow and to examine the reliability of the LESapproach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Re_τ) ischosen as 180 based on the friction velocity and the channel depth. The frequency of the drivingpressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statisticalturbulence quantities as well as the flow structures are analyzed.展开更多
基金supported by the Open Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences (Grant No. 201503)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05-01)+1 种基金the National Natural Science Foundation of China (Grant No. 51579163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1426)
文摘Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.51527809)the Research Project of China Three Gorges Corporation(Grant No.0704106).
文摘In this paper, a particle imaging velocimetry (PIV) system of high-temporal-spatial resolution is used to investigate the spanwise vortex distribution of fully developed turbulent flows in an open channel and its relationship with the turbulence. The distributions of the time-averaged velocity, the turbulence intensity and the Reynolds stress are obtained in the longitudinal profile. The third-generation vortex identification method (based on the Omega-Liutex vector) is applied to accurately identify and analyze the vortex in the spanwise direction. The results suggest that the vortex density increases with the Reynolds number at a given aspect ratio (B / H) of the flow. The distribution trend of the spanwise vortex density in the vertical direction remains unchanged for different discharges. Specifically, the vortex density increases along the vertical direction and reaches the peak at y / H = 0.15, then decreases and reaches the bottoms at the flow surface.
文摘This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV). Velocity vector plots and vorticity contours of the flow field on the upstream plane of symmetry (y = 0 cm) and on the planes :e3 cm away from the plane of symmetry Cv = ~3 cm) are presented. The vorticity and circulation of the horseshoe vortices were determined using the forward difference technique and Stokes theorem, respectively. The results show that the magnitudes of circulations are similar on the planes y = 3 cm and y = -3 cm, which are less than those on the plane y = 0 cm. The circulation decreases with the increase of flow shallowness, and increases with the densimetric Froude number. It also increases with the pier Reynolds number at a constant densimetric Froude number, or at a constant flow shallowness. The relative vortex strength (dimensionless circulation) decreases with the increase of the pier Reynolds number. Some empirical equations are proposed based on the results. The predicted circulation values with these equations match the measured data, which indicates that these equations can be used to estimate the circulation in future studies.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90405007, 10772173 and 90605005)the Program for Cheung Kong Scholars and Innovative Research Team in the University+1 种基金the Science and Technology Innovative Foundation of the Chinese Academy of Sciences (Grant No CXJJ-237)the Anhui Provincial Excellent Young Scholars Foundation (Grant No 08040106826)
文摘Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation (DNS). The objective of this study is to reveal the response of the near-wall and surface-influenced turbulence to the spanwise traveling wave control. Three typical frequencies of the spanwise traveling wave, i.e., high-, middle- and low-frequency, corresponding to the exciting periods at 25, 50 and 100, are considered to study the turbulence dynamics in the wall and surface regions. To elucidate the behaviors of turbulence statistics, some typical quantities, including the mean velocity, velocity fluctuations and the structures of turbulence fluctuations, are exhibited and analyzed.
文摘Pulsating turbulent open channel flow has been investigated by the use ofLarge Eddy Simulation (LES) tech-nique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulentSGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equationsare numerically solved by a fractional — step method. The objective of this study is to deal withthe behavior of the pulsating turbulent open channel flow and to examine the reliability of the LESapproach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Re_τ) ischosen as 180 based on the friction velocity and the channel depth. The frequency of the drivingpressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statisticalturbulence quantities as well as the flow structures are analyzed.