The background to this research was a flooding incident that occurred in Bridgend, Co. Donegal, Ireland in August 2017. While several properties were flooded, a flooding case study of a single dwelling house adjacent ...The background to this research was a flooding incident that occurred in Bridgend, Co. Donegal, Ireland in August 2017. While several properties were flooded, a flooding case study of a single dwelling house adjacent to the Bridgend River at Riverdale, Bunamayne, Co. Donegal, Ireland is used herein. For this study the flooded site shall be referred to as the “Hegarty property”. A structure in the form of a stone arched culvert is located directly adjacent to the two-storey detached dwelling house on the Hegarty Property. While the culvert is referred to locally as a bridge, within this research the word culvert will be used in connection with the structure. The culvert has a concrete surrounded utility (watermain) crossing at a gradient below the culvert soffit on the upstream face of the structure. The utility obstructed flow through the culvert and contributed to the flooding event. Given the implication of climate change and the increased probability of more extreme flooding events, it was decided to explore the case study to ascertain the factors that contribute to flooding events when utilities are positioned at culvert or bridge structures. This work was completed to assist undergraduate students, researchers, and local authorities in a relatively unknown area of flood causation.展开更多
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under d...Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.展开更多
The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influ...The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.展开更多
This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics re...This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.展开更多
The theory of poroelasticity is introduced to study the hydraulic properties of the steady uniform turbulent flow in a partially vegetated rectangular channel. Plants are assumed as immovable media. The resistance cau...The theory of poroelasticity is introduced to study the hydraulic properties of the steady uniform turbulent flow in a partially vegetated rectangular channel. Plants are assumed as immovable media. The resistance caused by vegetation is expressed by the theory of poroelasticity. Considering the influence of a secondary flow, the momentum equation can be simplified. The momentum equation is nondimensionalized to obtain a smooth solution for the lateral distribution of the longitudinal velocity. To verify the model, an acoustic Doppler velocimeter (ADV) is used to measure the velocity field in a rectangular open channel partially with emergent artificial rigid vegetation. Comparisons between the measured data and the computed results show that the method can predict the transverse distributions of stream-wise velocities in turbulent flows in a rectangular channel with partial vegetation.展开更多
Flow resistance in fluvial open channels, especially in steep gravel-bed channels, still presents challenges to researchers and engineers. This article presents some new data from both the flume experiments and field ...Flow resistance in fluvial open channels, especially in steep gravel-bed channels, still presents challenges to researchers and engineers. This article presents some new data from both the flume experiments and field measurements. Data analysis using the divided hydraulic radius approach shows that the relative roughness plays a significant role in the bed form resistance. A new set of formulas that incorporate the relative roughness are proposed. As compared with several existing formulas, the proposed formulas can be used to better estimate the bed form resistance.展开更多
Analysis on velocity distributions of steady, uniform suspended sediment-laden flow in open channels was presented. The sediment particle-particle interactions and the buoyancy effects due to density stratification we...Analysis on velocity distributions of steady, uniform suspended sediment-laden flow in open channels was presented. The sediment particle-particle interactions and the buoyancy effects due to density stratification were taken into account through a water sediment mixture's constitute relationship and an adapted Monin-Obukhov length scale to validate the theory for a wider spectrum of sediment concentrations. The developed model with the same Von Karman coefficient as that of a single phase flow was shown to be in the excellent agreement with the measurement results in the controlled experiments with both the low and heavy sediment concentrations.展开更多
This study focuses on the effects of one-line emergent natural tree(Cupressus Macrocarpa) planted at the edge of the floodplain in a compound open-channel flow. The flow velocity and water level are measured and use...This study focuses on the effects of one-line emergent natural tree(Cupressus Macrocarpa) planted at the edge of the floodplain in a compound open-channel flow. The flow velocity and water level are measured and used to analyze the flow structure. The time averaged and depth-averaged streamwise velocity distributions with root mean square(rms) and time series of streamwise velocity distrbution are analyzed. The velocity distribution considerably changes along the compound channel. The streamwise velocity distribution fits with logarithmic distribution in the non-vegetated case, but for vegetated cases, the streamwise velocity distribution shows S shaped profile at the 1/3 part of floodplain(/3)B_f and main channel(/3)B_m close to the boundary between floodplain and main channel. Additionally, it is obtained that the presence of tree line increases turbulence intensity over the compound open-channel. Moreover, an oscillation period is obtained in the flow caused by tree line by analyzing time series of the streamwise velocity distribution. The oscillation is present everywhere in the floodplain and present at almost/3 B_m part of the main channel which is close to the junction between floodplain and main channel.展开更多
The aquatic vegetation can significantly affect the flow structure,the sediment transport,the bed scour and the water quality in rivers,lakes,reservoirs and open channels.In this study,the lattice Boltzmann method(LBM...The aquatic vegetation can significantly affect the flow structure,the sediment transport,the bed scour and the water quality in rivers,lakes,reservoirs and open channels.In this study,the lattice Boltzmann method(LBM)is applied in the two-dimensional numerical simulation of the flow structure in a flume with rigid vegetation.A multi-relaxation time model is applied to improve the stability of the numerical scheme for flows with a high Reynolds number.The vegetation induced drag force is added in the lattice Boltzmann equation model in order to improve the simulation accuracy and an algorithm of the multi-relaxation time is developed.Numerical simulations are performed for a wide range of flow and vegetation conditions and are validated by comparing with the laboratory experiments.Analysis of the simulated and experimentally measured flow Helds shows that the numerical simulation can satisfactorily reproduce the laboratory experiments,indicating that the proposed lattice Boltzmann model enjoys a high accuracy for simulating the flow-vegetation interaction in open channels.展开更多
Vegetation is of great significance in river ecosystems in terms of hydrodynamics,water environment and ecology.The question of how to predict the bulk velocity in channel flow through submerged vegetation is currentl...Vegetation is of great significance in river ecosystems in terms of hydrodynamics,water environment and ecology.The question of how to predict the bulk velocity in channel flow through submerged vegetation is currently a hot topic in hydraulics research.The present study addresses this question.The various formulae used for bulk velocity estimation in previous work were reviewed and compared.The main novelty of this paper is that a new expression of friction factor is proposed as a function of two dimensionless factors,and the number of tuning parameters is less than that in previous work.A comparison of measured and calculated data was conducted for flow through submerged rigid and flexible vegetation.The comparison showed that the proposed new model can make more accurate predictions than previous models.It is envisaged that the proposed formulation can be usefully employed in eco-hydraulics predictions.展开更多
The flow structure and geomorphology of rivers are significantly affected by vegetation patterns. In the present study, the effect of vegetation in the form of discontinuous and vertically double layered patches parti...The flow structure and geomorphology of rivers are significantly affected by vegetation patterns. In the present study, the effect of vegetation in the form of discontinuous and vertically double layered patches particularly on the resulting flow turbulence was examined computationally in an open channel. A k-ɛ model was implemented in this research work which was developed using 3-D numerical code FLUENT (ANSYS). After the validation process of numerical model, the impact of discontinuous layered vegetation patches on the flow turbulence was investigated against varying vegetation density and patch length. The mean stream-wise velocities at specified positions showed larger spatial fluctuations directly upstream and downstream of vegetation elements, whereas sharp inflections in the profiles were witnessed at the top of smaller submerged elements i.e. z/hs= 1 (where z is the flow depth and hs is the smaller vegetation height). The reduction in flow velocity due to tall vegetation structure was more as compared with that of short vegetation. The mean velocity in the patch regions was visibly higher than that in the gap regions. The profiles of turbulent flow properties showed more rise and fall within the patches with a high vegetation density i.e. Ss/d= 4;and St/d= 8 (where Ss/d and St/d are the smaller and taller vegetation spacing, while d is the vegetation diameter) as compared with low vegetation density i.e. Ss/d= 8;and St/d= 16. The turbulent flow structure in the large patch and gap regions was found to be more stable than that in the small patches and gaps;whereas, due to the variation in distribution form of the patch, turbulence is relatively unaffected, and the flow structure variation is low. Turbulence was observed to be large, followed by a saw-tooth distribution within the patches;whereas, low turbulence is observed in the non-vegetation regions. The turbulent intensity acquired maximum of 13% turbulence for dense vegetation arrangement as compared to that of sparse arrangement having maximum of 9% turbulent intensity. A noteworthy rise in turbulent kinetic energy and turbulent intensity was witnessed as the flow passed through the vegetated regions. Hence, a non-uniform flow was observed through discontinuous and double layered vegetation patches.展开更多
In this paper, a particle imaging velocimetry (PIV) system of high-temporal-spatial resolution is used to investigate the spanwise vortex distribution of fully developed turbulent flows in an open channel and its rela...In this paper, a particle imaging velocimetry (PIV) system of high-temporal-spatial resolution is used to investigate the spanwise vortex distribution of fully developed turbulent flows in an open channel and its relationship with the turbulence. The distributions of the time-averaged velocity, the turbulence intensity and the Reynolds stress are obtained in the longitudinal profile. The third-generation vortex identification method (based on the Omega-Liutex vector) is applied to accurately identify and analyze the vortex in the spanwise direction. The results suggest that the vortex density increases with the Reynolds number at a given aspect ratio (B / H) of the flow. The distribution trend of the spanwise vortex density in the vertical direction remains unchanged for different discharges. Specifically, the vortex density increases along the vertical direction and reaches the peak at y / H = 0.15, then decreases and reaches the bottoms at the flow surface.展开更多
It is now over half a century since Keulegan conducted his open channel flow experiments. Over the past decades, many empirical formulae were proposed based on his results, however, there is still not a combined expre...It is now over half a century since Keulegan conducted his open channel flow experiments. Over the past decades, many empirical formulae were proposed based on his results, however, there is still not a combined expression to describe the effects of friction over all hydraulic regions in open channel flows. Therefore, in this letter, based on the analysis of the implicit model and the logarithmic matching method, the results of Keulegan (for authentic experiment data are no longer available, here we adopt the analytical solutions given by Dou) are rescaled into one monotone curve by combining the Reynolds number and the relative roughness of the river bed. A united expression that could cover the entire turbulence regions and be validated with Dou's analytical solutions is suggested to estimate the friction factor throughout the turbulent region in open channel flows, with higher accuracy than that of the previous formulas.展开更多
Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation (DNS). The objective of this study is to reveal the response of the n...Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation (DNS). The objective of this study is to reveal the response of the near-wall and surface-influenced turbulence to the spanwise traveling wave control. Three typical frequencies of the spanwise traveling wave, i.e., high-, middle- and low-frequency, corresponding to the exciting periods at 25, 50 and 100, are considered to study the turbulence dynamics in the wall and surface regions. To elucidate the behaviors of turbulence statistics, some typical quantities, including the mean velocity, velocity fluctuations and the structures of turbulence fluctuations, are exhibited and analyzed.展开更多
Pulsating turbulent open channel flow has been investigated by the use ofLarge Eddy Simulation (LES) tech-nique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulentSGS stress to closure the governing equation...Pulsating turbulent open channel flow has been investigated by the use ofLarge Eddy Simulation (LES) tech-nique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulentSGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equationsare numerically solved by a fractional — step method. The objective of this study is to deal withthe behavior of the pulsating turbulent open channel flow and to examine the reliability of the LESapproach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Re_τ) ischosen as 180 based on the friction velocity and the channel depth. The frequency of the drivingpressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statisticalturbulence quantities as well as the flow structures are analyzed.展开更多
Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the character...Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.展开更多
The self-aeration in open channel flows, called white waters, is a phenomenon seen in spillways and steep chutes. The air distribution in the flow is always an important and fundamental issue. The present study develo...The self-aeration in open channel flows, called white waters, is a phenomenon seen in spillways and steep chutes. The air distribution in the flow is always an important and fundamental issue. The present study develops a numerical model to predict the air concentration distribution in self-aerated open channel flows, by taking the air-water flow as consisting of a low flow region and an upper flow region. On the interface between the two regions, the air concentration is 0.5. In the low flow region where air concentration is lower than 0.5, air bubbles diffuse in the water flow by turbulent transport fluctuations, and in the upper region where air concentration is higher than 0.5, water droplets and free surface roughness diffuse in the air. The air concentration distributions obtained from the diffusion model are in good agreement with measured data both in the uniform equilibrium region and in the self-aerated developing region. It is demonstrated that the numerical model provides a reasonable description of the self-aeration region in open channel flows.展开更多
This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV...This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV). Velocity vector plots and vorticity contours of the flow field on the upstream plane of symmetry (y = 0 cm) and on the planes :e3 cm away from the plane of symmetry Cv = ~3 cm) are presented. The vorticity and circulation of the horseshoe vortices were determined using the forward difference technique and Stokes theorem, respectively. The results show that the magnitudes of circulations are similar on the planes y = 3 cm and y = -3 cm, which are less than those on the plane y = 0 cm. The circulation decreases with the increase of flow shallowness, and increases with the densimetric Froude number. It also increases with the pier Reynolds number at a constant densimetric Froude number, or at a constant flow shallowness. The relative vortex strength (dimensionless circulation) decreases with the increase of the pier Reynolds number. Some empirical equations are proposed based on the results. The predicted circulation values with these equations match the measured data, which indicates that these equations can be used to estimate the circulation in future studies.展开更多
The shading method is a simple but effective way of reducing image blooming in the measurement of open channel flows with the Particle Image Velocimetry (PIV).The current paper proposes a simplified analytical model...The shading method is a simple but effective way of reducing image blooming in the measurement of open channel flows with the Particle Image Velocimetry (PIV).The current paper proposes a simplified analytical model for light attenuation using this method.The model is verified against experimental data,and the influence of several parameters is illustrated numerically.The possible adverse effect due to the light attenuation is shown to be limited when the parameters in the shading method are in an adequate range,as shown by processing standard images of Case B in PIV Challenge 03.A simple criterion for setting the shade in experiment is given for controlling the errors caused by the shading technique within an acceptable range.展开更多
From the group movement of the bed load within the bottom layer,details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper.Whether the sediment is initiated into motion correspon...From the group movement of the bed load within the bottom layer,details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper.Whether the sediment is initiated into motion corresponds to whether the constant term in the equation is equal to zero.If constant term is zero and no dispersive force is considered,the equation represents the traditional Shields initiation curve,and if constant term is zero without the dispersive force being considered,then a new Shields curve which is much lower than the traditional one is got.The fixed point of the equation corresponds to the equilibrium sediment transport of bed load.In the mutation analysis,we have found that the inflection point is the demarcation point of breaking.In theory,the breaking point corresponds to the dividing boundary line,across which the bed form changes from flat bed to sand ripple or sand dune.Compared with the experimental data of Chatou Hydraulic Lab in France,the conclusions are verified.展开更多
文摘The background to this research was a flooding incident that occurred in Bridgend, Co. Donegal, Ireland in August 2017. While several properties were flooded, a flooding case study of a single dwelling house adjacent to the Bridgend River at Riverdale, Bunamayne, Co. Donegal, Ireland is used herein. For this study the flooded site shall be referred to as the “Hegarty property”. A structure in the form of a stone arched culvert is located directly adjacent to the two-storey detached dwelling house on the Hegarty Property. While the culvert is referred to locally as a bridge, within this research the word culvert will be used in connection with the structure. The culvert has a concrete surrounded utility (watermain) crossing at a gradient below the culvert soffit on the upstream face of the structure. The utility obstructed flow through the culvert and contributed to the flooding event. Given the implication of climate change and the increased probability of more extreme flooding events, it was decided to explore the case study to ascertain the factors that contribute to flooding events when utilities are positioned at culvert or bridge structures. This work was completed to assist undergraduate students, researchers, and local authorities in a relatively unknown area of flood causation.
基金supported by the Open Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences (Grant No. 201503)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05-01)+1 种基金the National Natural Science Foundation of China (Grant No. 51579163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1426)
文摘Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.
基金supported by the National Natural Science Foundation of China (Grants No.50879019,50909036,and 50879020)the Research Fund for the Doctoral Program of Higher Education (Grants No.200802940001 and 200802941028)+3 种基金the Fundamental Research Funds for the Central Universities (Grants No.2010B02214,2009B08014,and 2010B14214)the Natural Science Foundation of Hohai University(Grant No. 2008426411)the Jiangsu "333" Program for High Level Talents (Grant No. 2017-B08038)the National Undergraduate Innovation Training Plan (Grant No.G20101106)
文摘The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10772166and10672151)the Foundation of China Academy of Engineering Physics(Grant No20050104)
文摘This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.
基金supported by the National Natural Science Foundation of China (Nos. 10972163 and 51079102)the Fundamental Research Funds for the Central Universities (No. 2104001)
文摘The theory of poroelasticity is introduced to study the hydraulic properties of the steady uniform turbulent flow in a partially vegetated rectangular channel. Plants are assumed as immovable media. The resistance caused by vegetation is expressed by the theory of poroelasticity. Considering the influence of a secondary flow, the momentum equation can be simplified. The momentum equation is nondimensionalized to obtain a smooth solution for the lateral distribution of the longitudinal velocity. To verify the model, an acoustic Doppler velocimeter (ADV) is used to measure the velocity field in a rectangular open channel partially with emergent artificial rigid vegetation. Comparisons between the measured data and the computed results show that the method can predict the transverse distributions of stream-wise velocities in turbulent flows in a rectangular channel with partial vegetation.
基金Project supported by the National Natural Science Foundation of China(Grant No.50779082)the National Basic Research Program of China(973 Program,Grant No.2007CB407202)supported by the CSTC 2011
文摘Flow resistance in fluvial open channels, especially in steep gravel-bed channels, still presents challenges to researchers and engineers. This article presents some new data from both the flume experiments and field measurements. Data analysis using the divided hydraulic radius approach shows that the relative roughness plays a significant role in the bed form resistance. A new set of formulas that incorporate the relative roughness are proposed. As compared with several existing formulas, the proposed formulas can be used to better estimate the bed form resistance.
文摘Analysis on velocity distributions of steady, uniform suspended sediment-laden flow in open channels was presented. The sediment particle-particle interactions and the buoyancy effects due to density stratification were taken into account through a water sediment mixture's constitute relationship and an adapted Monin-Obukhov length scale to validate the theory for a wider spectrum of sediment concentrations. The developed model with the same Von Karman coefficient as that of a single phase flow was shown to be in the excellent agreement with the measurement results in the controlled experiments with both the low and heavy sediment concentrations.
基金the funding of the research project (MF14010) from Adnan Menderes University which allows establishing the experiment flume in the laboratory
文摘This study focuses on the effects of one-line emergent natural tree(Cupressus Macrocarpa) planted at the edge of the floodplain in a compound open-channel flow. The flow velocity and water level are measured and used to analyze the flow structure. The time averaged and depth-averaged streamwise velocity distributions with root mean square(rms) and time series of streamwise velocity distrbution are analyzed. The velocity distribution considerably changes along the compound channel. The streamwise velocity distribution fits with logarithmic distribution in the non-vegetated case, but for vegetated cases, the streamwise velocity distribution shows S shaped profile at the 1/3 part of floodplain(/3)B_f and main channel(/3)B_m close to the boundary between floodplain and main channel. Additionally, it is obtained that the presence of tree line increases turbulence intensity over the compound open-channel. Moreover, an oscillation period is obtained in the flow caused by tree line by analyzing time series of the streamwise velocity distribution. The oscillation is present everywhere in the floodplain and present at almost/3 B_m part of the main channel which is close to the junction between floodplain and main channel.
基金Supported by the National Natural Science Foundation of China(Grant No.11861003,11761005).
文摘The aquatic vegetation can significantly affect the flow structure,the sediment transport,the bed scour and the water quality in rivers,lakes,reservoirs and open channels.In this study,the lattice Boltzmann method(LBM)is applied in the two-dimensional numerical simulation of the flow structure in a flume with rigid vegetation.A multi-relaxation time model is applied to improve the stability of the numerical scheme for flows with a high Reynolds number.The vegetation induced drag force is added in the lattice Boltzmann equation model in order to improve the simulation accuracy and an algorithm of the multi-relaxation time is developed.Numerical simulations are performed for a wide range of flow and vegetation conditions and are validated by comparing with the laboratory experiments.Analysis of the simulated and experimentally measured flow Helds shows that the numerical simulation can satisfactorily reproduce the laboratory experiments,indicating that the proposed lattice Boltzmann model enjoys a high accuracy for simulating the flow-vegetation interaction in open channels.
基金Supported by the National Key Research and Development Program of China(Grant No.2019YFD1100205)the National Natural Science Foundation of China(Grant Nos.51809286,51809288).
文摘Vegetation is of great significance in river ecosystems in terms of hydrodynamics,water environment and ecology.The question of how to predict the bulk velocity in channel flow through submerged vegetation is currently a hot topic in hydraulics research.The present study addresses this question.The various formulae used for bulk velocity estimation in previous work were reviewed and compared.The main novelty of this paper is that a new expression of friction factor is proposed as a function of two dimensionless factors,and the number of tuning parameters is less than that in previous work.A comparison of measured and calculated data was conducted for flow through submerged rigid and flexible vegetation.The comparison showed that the proposed new model can make more accurate predictions than previous models.It is envisaged that the proposed formulation can be usefully employed in eco-hydraulics predictions.
文摘The flow structure and geomorphology of rivers are significantly affected by vegetation patterns. In the present study, the effect of vegetation in the form of discontinuous and vertically double layered patches particularly on the resulting flow turbulence was examined computationally in an open channel. A k-ɛ model was implemented in this research work which was developed using 3-D numerical code FLUENT (ANSYS). After the validation process of numerical model, the impact of discontinuous layered vegetation patches on the flow turbulence was investigated against varying vegetation density and patch length. The mean stream-wise velocities at specified positions showed larger spatial fluctuations directly upstream and downstream of vegetation elements, whereas sharp inflections in the profiles were witnessed at the top of smaller submerged elements i.e. z/hs= 1 (where z is the flow depth and hs is the smaller vegetation height). The reduction in flow velocity due to tall vegetation structure was more as compared with that of short vegetation. The mean velocity in the patch regions was visibly higher than that in the gap regions. The profiles of turbulent flow properties showed more rise and fall within the patches with a high vegetation density i.e. Ss/d= 4;and St/d= 8 (where Ss/d and St/d are the smaller and taller vegetation spacing, while d is the vegetation diameter) as compared with low vegetation density i.e. Ss/d= 8;and St/d= 16. The turbulent flow structure in the large patch and gap regions was found to be more stable than that in the small patches and gaps;whereas, due to the variation in distribution form of the patch, turbulence is relatively unaffected, and the flow structure variation is low. Turbulence was observed to be large, followed by a saw-tooth distribution within the patches;whereas, low turbulence is observed in the non-vegetation regions. The turbulent intensity acquired maximum of 13% turbulence for dense vegetation arrangement as compared to that of sparse arrangement having maximum of 9% turbulent intensity. A noteworthy rise in turbulent kinetic energy and turbulent intensity was witnessed as the flow passed through the vegetated regions. Hence, a non-uniform flow was observed through discontinuous and double layered vegetation patches.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.51527809)the Research Project of China Three Gorges Corporation(Grant No.0704106).
文摘In this paper, a particle imaging velocimetry (PIV) system of high-temporal-spatial resolution is used to investigate the spanwise vortex distribution of fully developed turbulent flows in an open channel and its relationship with the turbulence. The distributions of the time-averaged velocity, the turbulence intensity and the Reynolds stress are obtained in the longitudinal profile. The third-generation vortex identification method (based on the Omega-Liutex vector) is applied to accurately identify and analyze the vortex in the spanwise direction. The results suggest that the vortex density increases with the Reynolds number at a given aspect ratio (B / H) of the flow. The distribution trend of the spanwise vortex density in the vertical direction remains unchanged for different discharges. Specifically, the vortex density increases along the vertical direction and reaches the peak at y / H = 0.15, then decreases and reaches the bottoms at the flow surface.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51479007,11172218 and 11372232)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20130141110016)
文摘It is now over half a century since Keulegan conducted his open channel flow experiments. Over the past decades, many empirical formulae were proposed based on his results, however, there is still not a combined expression to describe the effects of friction over all hydraulic regions in open channel flows. Therefore, in this letter, based on the analysis of the implicit model and the logarithmic matching method, the results of Keulegan (for authentic experiment data are no longer available, here we adopt the analytical solutions given by Dou) are rescaled into one monotone curve by combining the Reynolds number and the relative roughness of the river bed. A united expression that could cover the entire turbulence regions and be validated with Dou's analytical solutions is suggested to estimate the friction factor throughout the turbulent region in open channel flows, with higher accuracy than that of the previous formulas.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90405007, 10772173 and 90605005)the Program for Cheung Kong Scholars and Innovative Research Team in the University+1 种基金the Science and Technology Innovative Foundation of the Chinese Academy of Sciences (Grant No CXJJ-237)the Anhui Provincial Excellent Young Scholars Foundation (Grant No 08040106826)
文摘Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation (DNS). The objective of this study is to reveal the response of the near-wall and surface-influenced turbulence to the spanwise traveling wave control. Three typical frequencies of the spanwise traveling wave, i.e., high-, middle- and low-frequency, corresponding to the exciting periods at 25, 50 and 100, are considered to study the turbulence dynamics in the wall and surface regions. To elucidate the behaviors of turbulence statistics, some typical quantities, including the mean velocity, velocity fluctuations and the structures of turbulence fluctuations, are exhibited and analyzed.
文摘Pulsating turbulent open channel flow has been investigated by the use ofLarge Eddy Simulation (LES) tech-nique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulentSGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equationsare numerically solved by a fractional — step method. The objective of this study is to deal withthe behavior of the pulsating turbulent open channel flow and to examine the reliability of the LESapproach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Re_τ) ischosen as 180 based on the friction velocity and the channel depth. The frequency of the drivingpressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statisticalturbulence quantities as well as the flow structures are analyzed.
文摘Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.
基金supported by the National Natural Science Foun-dation of China(Grant No.51179113)the Doctoral Program of China Education Ministry(Grant No.20120181110083)
文摘The self-aeration in open channel flows, called white waters, is a phenomenon seen in spillways and steep chutes. The air distribution in the flow is always an important and fundamental issue. The present study develops a numerical model to predict the air concentration distribution in self-aerated open channel flows, by taking the air-water flow as consisting of a low flow region and an upper flow region. On the interface between the two regions, the air concentration is 0.5. In the low flow region where air concentration is lower than 0.5, air bubbles diffuse in the water flow by turbulent transport fluctuations, and in the upper region where air concentration is higher than 0.5, water droplets and free surface roughness diffuse in the air. The air concentration distributions obtained from the diffusion model are in good agreement with measured data both in the uniform equilibrium region and in the self-aerated developing region. It is demonstrated that the numerical model provides a reasonable description of the self-aeration region in open channel flows.
文摘This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV). Velocity vector plots and vorticity contours of the flow field on the upstream plane of symmetry (y = 0 cm) and on the planes :e3 cm away from the plane of symmetry Cv = ~3 cm) are presented. The vorticity and circulation of the horseshoe vortices were determined using the forward difference technique and Stokes theorem, respectively. The results show that the magnitudes of circulations are similar on the planes y = 3 cm and y = -3 cm, which are less than those on the plane y = 0 cm. The circulation decreases with the increase of flow shallowness, and increases with the densimetric Froude number. It also increases with the pier Reynolds number at a constant densimetric Froude number, or at a constant flow shallowness. The relative vortex strength (dimensionless circulation) decreases with the increase of the pier Reynolds number. Some empirical equations are proposed based on the results. The predicted circulation values with these equations match the measured data, which indicates that these equations can be used to estimate the circulation in future studies.
基金Project supported by the National Natural Science Foundation of China (Grant No.50779023)
文摘The shading method is a simple but effective way of reducing image blooming in the measurement of open channel flows with the Particle Image Velocimetry (PIV).The current paper proposes a simplified analytical model for light attenuation using this method.The model is verified against experimental data,and the influence of several parameters is illustrated numerically.The possible adverse effect due to the light attenuation is shown to be limited when the parameters in the shading method are in an adequate range,as shown by processing standard images of Case B in PIV Challenge 03.A simple criterion for setting the shade in experiment is given for controlling the errors caused by the shading technique within an acceptable range.
基金Supported by National Natural Science Foundation of China (No.50809045 and No.40776045)National Basic Research Program of China ("973" Program)(No.2007CB714101)Ministry of Education’s New Century Elitist Project of China
文摘From the group movement of the bed load within the bottom layer,details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper.Whether the sediment is initiated into motion corresponds to whether the constant term in the equation is equal to zero.If constant term is zero and no dispersive force is considered,the equation represents the traditional Shields initiation curve,and if constant term is zero without the dispersive force being considered,then a new Shields curve which is much lower than the traditional one is got.The fixed point of the equation corresponds to the equilibrium sediment transport of bed load.In the mutation analysis,we have found that the inflection point is the demarcation point of breaking.In theory,the breaking point corresponds to the dividing boundary line,across which the bed form changes from flat bed to sand ripple or sand dune.Compared with the experimental data of Chatou Hydraulic Lab in France,the conclusions are verified.