Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining tech...Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.展开更多
Under circumstances in which both underground mining and open-pit mining are employed, the mining effects of two approaches will be superposed and the mining slope will receive several induced stress fields, which mak...Under circumstances in which both underground mining and open-pit mining are employed, the mining effects of two approaches will be superposed and the mining slope will receive several induced stress fields, which makes the sliding mechanism and deformation law of slope rock mass more complicated. This paper, targeting at the east slope of Antaibao Mine with the joint employment of underground mining and open-pit mining, aims to study the moving law of the slope rock mass and the damage mechanism to the overburden of the goaf by numerical simulation. It is supposed that models of possible damage to the slope could be explored for guidance to safety-production of the mine.展开更多
Underground mining is an economically viable option for exploiting ore reserves deemed uneconomic after open pit mining. However, underground development can have adverse effects on the above existing open pit slope w...Underground mining is an economically viable option for exploiting ore reserves deemed uneconomic after open pit mining. However, underground development can have adverse effects on the above existing open pit slope walls. As a goal of this paper, identification and assessment of potential slope instabilities prior to underground development is crucial for safe and sustainable mining. Towards goal achieving, this paper gives a comprehensive parametric study to investigate the influence of sublevel open stope (SLOS) underground mining on the surface and open pit slope walls. By means of numerical simulation, the SLOS design is tried against the existing open pit followed by adjustments of important slope parameters which are overall slope height (OSH) and overall slope angle (OSA). We found that underground mining may induce slope failure, particularly on the hangingwall side of the pit. Subsidence is prominent on the hanging wall and the surface, whereas, the uplift dominates the footwall and pit bottom. Pit wall closure is observed during underground mining. Although the assigned dimensions in the parametric study show a negligible effect of OSH and OSA, the high OSH experience low subsidence in comparison with low OSH. Overall, the results demonstrate that the slope walls on the hanging wall side are mostly affected by the underground mining and high-stress concentration prevails near slope toes and pit bottom. Additionally, slope deformation decrease from pit bottom towards the slope crest and surface. The results of this study add knowledge to open pit and underground mining interaction.展开更多
文摘Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.
文摘Under circumstances in which both underground mining and open-pit mining are employed, the mining effects of two approaches will be superposed and the mining slope will receive several induced stress fields, which makes the sliding mechanism and deformation law of slope rock mass more complicated. This paper, targeting at the east slope of Antaibao Mine with the joint employment of underground mining and open-pit mining, aims to study the moving law of the slope rock mass and the damage mechanism to the overburden of the goaf by numerical simulation. It is supposed that models of possible damage to the slope could be explored for guidance to safety-production of the mine.
文摘Underground mining is an economically viable option for exploiting ore reserves deemed uneconomic after open pit mining. However, underground development can have adverse effects on the above existing open pit slope walls. As a goal of this paper, identification and assessment of potential slope instabilities prior to underground development is crucial for safe and sustainable mining. Towards goal achieving, this paper gives a comprehensive parametric study to investigate the influence of sublevel open stope (SLOS) underground mining on the surface and open pit slope walls. By means of numerical simulation, the SLOS design is tried against the existing open pit followed by adjustments of important slope parameters which are overall slope height (OSH) and overall slope angle (OSA). We found that underground mining may induce slope failure, particularly on the hangingwall side of the pit. Subsidence is prominent on the hanging wall and the surface, whereas, the uplift dominates the footwall and pit bottom. Pit wall closure is observed during underground mining. Although the assigned dimensions in the parametric study show a negligible effect of OSH and OSA, the high OSH experience low subsidence in comparison with low OSH. Overall, the results demonstrate that the slope walls on the hanging wall side are mostly affected by the underground mining and high-stress concentration prevails near slope toes and pit bottom. Additionally, slope deformation decrease from pit bottom towards the slope crest and surface. The results of this study add knowledge to open pit and underground mining interaction.