The 32-bit extensible embedded processor RISC3200 originating from an RTL prototype core is intended for low-cost consumer multimedia products. In order to incorporate the reduced instruction set and the multimedia ex...The 32-bit extensible embedded processor RISC3200 originating from an RTL prototype core is intended for low-cost consumer multimedia products. In order to incorporate the reduced instruction set and the multimedia extension instruction set in a unifying pipeline, a scalable super-pipeline technique is adopted. Several other optimization techniques are proposed to boost the frequency and reduce the average CPI of the unifying pipeline. Based on a data flow graph (DFG) with delay information, the critical path of the pipeline stage can be located and shortened. This paper presents a distributed data bypass unit and a centralized pipeline control scheme for achieving lower CPI. Synthesis and simulation showed that the optimization techniques enable RISC3200 to operate at 200 MHz with an average CPI of 1.16. The core was integrated into a media SOC chip taped out in SMIC 0.18-micron technology. Preliminary testing result showed that the processor works well as we expected.展开更多
A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set process...A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.展开更多
本文设计了一种适用于电机矢量控制算法的数字信号处理系统的微架构定义,包括其指令集定义、存储器模型以及与主CPU的交互模式.该设计具有通过固定部分多操作数有效缩减指令编码长度提高代码密度以及后台执行多周期指令提高ALU并行效率...本文设计了一种适用于电机矢量控制算法的数字信号处理系统的微架构定义,包括其指令集定义、存储器模型以及与主CPU的交互模式.该设计具有通过固定部分多操作数有效缩减指令编码长度提高代码密度以及后台执行多周期指令提高ALU并行效率的显著优点.文中给出了典型的FOC控制算法在DSP(Digital Signal Processor)指令集上实现的指令周期数,也给出了对应架构的电路实现情况,最终以ARM CORTEX-M0及几款主流DSP作为比较基线,通过实测实验数据证明了体系结构的高能效比,以较为有限的电路面积代价,极大提高了集成DSP的嵌入式系统的运行效率.展开更多
Secure computing paradigms impose new architectural challenges for general-purpose processors. Cryptographic processing is needed for secure communications, storage, and computations. We identify two categories of ope...Secure computing paradigms impose new architectural challenges for general-purpose processors. Cryptographic processing is needed for secure communications, storage, and computations. We identify two categories of operations in symmetric-key and public-key cryptographic algorithms that are not common in previous general-purpose workloads: advanced bit operations within a word and multi-word operations. We define MOMR (Multiple Operands Multiple Results) execution or datarich execution as a unified solution to both challenges. It allows arbitrary n-bit permutations to be achieved in one or two cycles, rather than O(n) cycles as in existing RISC processors. It also enables significant acceleration of multiword multiplications needed by public-key ciphers. We propose two implementations of MOMR: one employs only hardware changes while the other uses Instruction Set Architecture (ISA) support. We show that MOMR execution leverages available resources in typical multi-issue processors with minimal additional cost. Multi-issue processors enhanced with MOMR units provide additional speedup over standard multi-issue processors with the same datapath. MOMR is a general architectural solution for word-oriented processor architectures to incorporate datarich operations.展开更多
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2002 AA1Z1140) and the Fork Ying TongEducation Foundation (No. 94031), China
文摘The 32-bit extensible embedded processor RISC3200 originating from an RTL prototype core is intended for low-cost consumer multimedia products. In order to incorporate the reduced instruction set and the multimedia extension instruction set in a unifying pipeline, a scalable super-pipeline technique is adopted. Several other optimization techniques are proposed to boost the frequency and reduce the average CPI of the unifying pipeline. Based on a data flow graph (DFG) with delay information, the critical path of the pipeline stage can be located and shortened. This paper presents a distributed data bypass unit and a centralized pipeline control scheme for achieving lower CPI. Synthesis and simulation showed that the optimization techniques enable RISC3200 to operate at 200 MHz with an average CPI of 1.16. The core was integrated into a media SOC chip taped out in SMIC 0.18-micron technology. Preliminary testing result showed that the processor works well as we expected.
基金Supported by the Industrial Internet Innovation and Development Project of Ministry of Industry and Information Technology (No.GHBJ2004)。
文摘A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.
文摘本文设计了一种适用于电机矢量控制算法的数字信号处理系统的微架构定义,包括其指令集定义、存储器模型以及与主CPU的交互模式.该设计具有通过固定部分多操作数有效缩减指令编码长度提高代码密度以及后台执行多周期指令提高ALU并行效率的显著优点.文中给出了典型的FOC控制算法在DSP(Digital Signal Processor)指令集上实现的指令周期数,也给出了对应架构的电路实现情况,最终以ARM CORTEX-M0及几款主流DSP作为比较基线,通过实测实验数据证明了体系结构的高能效比,以较为有限的电路面积代价,极大提高了集成DSP的嵌入式系统的运行效率.
文摘Secure computing paradigms impose new architectural challenges for general-purpose processors. Cryptographic processing is needed for secure communications, storage, and computations. We identify two categories of operations in symmetric-key and public-key cryptographic algorithms that are not common in previous general-purpose workloads: advanced bit operations within a word and multi-word operations. We define MOMR (Multiple Operands Multiple Results) execution or datarich execution as a unified solution to both challenges. It allows arbitrary n-bit permutations to be achieved in one or two cycles, rather than O(n) cycles as in existing RISC processors. It also enables significant acceleration of multiword multiplications needed by public-key ciphers. We propose two implementations of MOMR: one employs only hardware changes while the other uses Instruction Set Architecture (ISA) support. We show that MOMR execution leverages available resources in typical multi-issue processors with minimal additional cost. Multi-issue processors enhanced with MOMR units provide additional speedup over standard multi-issue processors with the same datapath. MOMR is a general architectural solution for word-oriented processor architectures to incorporate datarich operations.