In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ...In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.展开更多
Mining globally contributes to the growth of many economies of the world. Since its inception, the Zambian mining industry has contributed largely to the country’s economy. The various developments both in technology...Mining globally contributes to the growth of many economies of the world. Since its inception, the Zambian mining industry has contributed largely to the country’s economy. The various developments both in technology and knowledge have contributed to the scale at which mining is being done. Challenges in such a setting arise due to the socio-economic and environmental impacts of mining, which create multidimensional problems. The study investigated the importance of engaging stakeholders in progressive rehabilitation programs for large-scale open pit mines, using a case study of the Lumwana Mine and its host community, Manyama. A qualitative approach was used, and data was collected through one-on-one interviews. A combination of convenient and quota sampling was used to engage with host community leaders, professionals and academicians from various fields and institutions. Results showed that most participants had agreed that stakeholder engagement is important for progressive rehabilitation, but the challenge was that the host community and municipal council representatives were not aware of any progressive rehabilitation efforts at Lumwana Mine. This was attributed to a lack of stakeholder engagement and communication of mitigation progress activities by the Lumwana Mine. Results also revealed that the lack of environmental impact assessment regulations to compel companies to involve stakeholders throughout the entire life of the mine other than just at the pre-mining stage led to a lack of compliance and accountability in rehabilitation.展开更多
This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify...This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.展开更多
A type of velocity sensor CD 1, an auto recording instrument on blasting vibration YBJ 1 and a random signal and vibration analysis system (CRAS) were used to monitor the particle vibration induced by blasting at open...A type of velocity sensor CD 1, an auto recording instrument on blasting vibration YBJ 1 and a random signal and vibration analysis system (CRAS) were used to monitor the particle vibration induced by blasting at open pit slope in Hainan Iron Mine. The attenuating rules of blasting ground vibration on slope were developed. By means of the analysis and calculation of the blasting vibration data at open pit slope and the vertical particle vibration velocity assessment method based on the concept of vibration strength, the empirical attenuating equations which can be used for predicting and estimating the damage of slope were derived.展开更多
In this study,the effect of rock bridges on rock slope stability was investigated by incorporating nonpersistent joint networks in numerical models,and the critical profiles of an open pit mine were analysed.Parallel ...In this study,the effect of rock bridges on rock slope stability was investigated by incorporating nonpersistent joint networks in numerical models,and the critical profiles of an open pit mine were analysed.Parallel deterministic networks of infinite and finite lengths,ubiquitous joint network model and Veneziano joint network model were used in order to simulate the rock fractures.Materials were modelled based on the generalised Hoek-Brown and equivalent Mohr-Coulomb failure criteria.The parallel deterministic infinite and the ubiquitous joint network models produced lower safety factors.The introduction of rock bridges along discontinuity planes in the parallel deterministic network and Veneziano joint network models significantly contributed to the stability and strain distribution,which should be considered in stability analysis of rock mass in open pit by rock slope practitioners.The results show the significance of joints in hard rock behaviour and the joints should be included in order to attain practical and realistic simulations.展开更多
Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining tech...Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.展开更多
The design and practice in supporting the cut slope of an open-pit mine wereintroduced, in which the high pressure grouting method was used in reinforcing the weak formation inthe slopes. Based on a detailed geologica...The design and practice in supporting the cut slope of an open-pit mine wereintroduced, in which the high pressure grouting method was used in reinforcing the weak formation inthe slopes. Based on a detailed geological survey of the slope, a theoretical analysis was carriedout, and the design parameters were proposed, where the Tresca or Mohr-Coulomb yield criteria wasemployed. A patent technology, named 'Technology of high pressure and multiple grouting in differentlevels within a single hole', was employed in the construction. Anchor bars were also installed asgrouting proceeds. This method combines anchoring and grouting comprehensively and was foundsuccessful in practice.展开更多
The geological structure of the Changshanhao open-pit mine in Urad Middle Banner,Inner Mongolia,China is extremely complicated,and slope instability has frequently occurred in various forms,such as wedge sliding,beddi...The geological structure of the Changshanhao open-pit mine in Urad Middle Banner,Inner Mongolia,China is extremely complicated,and slope instability has frequently occurred in various forms,such as wedge sliding,bedding sliding,and toppling failure.In order to study the failure mechanisms of these slopes,the geological structure and mechanical rock properties were investigated based on field investigations and laboratory tests.Numerical models for the present mining area and final mining area of the original scheme were established to analyze slope stability.The results showed that the unique geomorphological characteristics of the mining area were generated by geological tectonism,and the north side of the stope is an anti-dip layered rock slope and the south side is a dip layered rock slope.Slope failure is the consequence of endogenic and exogenic integration,including physical and mechanical properties of the rock mass,geological structures such as faults and joints,and human-caused factors such as blasting and excavation disturbances.Then the original excavation scheme was redesigned mainly by optimizing the slope angle and decreasing the final mining depth to maintain slope stability.Finally,the Monte Carlo method was used to analyze the reliability of the slope angle optimization scheme.The open-pit mine excavation plan that meets the stability requirements was obtained eventually.展开更多
Combining the GIS (geographic information systems) grid-based data with four proposed column-based 3D slope stability analysis models, a comprehensive solution of a high-steep open-pit slope has been obtained. For s...Combining the GIS (geographic information systems) grid-based data with four proposed column-based 3D slope stability analysis models, a comprehensive solution of a high-steep open-pit slope has been obtained. For six searching ranges, 19 critical slip surfaces of different sizes have been studied, in which the minimum 3D safety factor is 1.33. Comparison of 3D safety factors of designed and proposed slope plans shows for all the critical slip surfaces for the proposed plan, the smallest 3D safety factor is 1.33 under the most unfavorable condition. This means that the proposed plan of the high slopes, about 600 m, of an open pit (2-5° steeper than designed plan) is feasible.展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
To study the stability of the west slope in Buzhaoba Open-Pit Mine and determine the aging stability coefficient during slide mass development, the deformation band of the west slope and the slide mass structure of th...To study the stability of the west slope in Buzhaoba Open-Pit Mine and determine the aging stability coefficient during slide mass development, the deformation band of the west slope and the slide mass structure of the 34,600 profile are obtained on the basis of hydrology, geology, and monitoring data.The residual thrust method is utilized to calculate the stability coefficients, which are 1.225 and 1.00 under sound and transfixion conditions, respectively. According to the rock damage and fragmentation and the principle of mechanical parameter degradation, the mechanical models of the slide mass development of the hard and soft rock slopes are established. An integrated model for calculating the slope stability coefficient is built considering water, vibration, and other external factors that pertain to the structural plane damage mechanism and the generating mechanism of the sliding mass. The change curve of the stability coefficient in the slide mass development is obtained from the relevant analyses,and afterwards, the stability control measures are proposed. The analysis results indicate that in the cracking stage of the hard rock, the slope stability coefficient decreases linearly with the increase in the length Lbof the hard rock crack zone. The linear slope is positively correlated to rock cohesion c. In the transfixion stage of the soft rock, the decrease speed of the stability coefficient is positively correlated to the residual strength of the soft rock. When the slope is stable, the stability coefficient is in a quadratic-linear relationship with the decreased height Dh of the side slope and in a linear relationship with anchoring force P.展开更多
Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper estab...Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper establishes calculation models for these two marginal costs. The optimizing model for slope cover height can be determined by including marginal cost models in the objective function. The paper has two main contributions:(a) it fully considers redistribution of dumping space in the model;(b) it introduces price fluctuations and cash discounts in the model. We use the typical open-pit mine as an example to test and prove the model. We conclude that a completely covered slope is reasonable in Haerwusu open pit mine; in addition to an increasing price index, the slope cover height can be reduced; and that price changes are one of the most important influencing factors of slope cover height optimization in an open-pit mine.展开更多
Rock slope hazard assessment is an important part of risk analysis for open pit mines.The main parameters that can lead to rock slope failures are the parameters traditionally used in geomechanical classifications,the...Rock slope hazard assessment is an important part of risk analysis for open pit mines.The main parameters that can lead to rock slope failures are the parameters traditionally used in geomechanical classifications,the slope geometrical parameters and external factors like rainfall and blasting.This paper presents a methodology for a hazard assessment system for open pit mine slopes based on 88 cases collated around the world using principal components analysis,discriminant analysis and confidence ellipses.The historical cases used in this study included copper,gold,iron,diamond,lead and zinc,platinum and claystone mines.The variables used in the assessment methodology are uniaxial compressive strength of intact rock;spacing,persistence,opening,roughness,infilling and orientation of the main discontinuity set;weathering of the rock mass;groundwater;blasting method;and height and inclination of the pit.While principal component analysis was used to quantify the data,the discriminant analysis was used to establish a rule to classify new slopes about its stability condition.To provide a practical hazard assessment system,confidence ellipses were used to propose a hazard graph and generate the HAS-Q.The discriminant rule developed in this research has a high discrimination capacity with an error rate of 11.36%.展开更多
The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety ...The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety factor of the pit slope of a coal mine in Bangladesh. In the present analyses, two types of models have been presented. The first model estimates safety factor without seismic effect on the overall pit slope of the model; the second model incorporates safety factor with seismic stability of the model. The calculated optimum slope angle of the first model is 31% with a rational safety factor of 1.51, prior to the seismic effect. However, the value is reduced to 0.93, 0.82, and 0.72, after we applies the seismic effect in the second model with M6, M6.5, and M7, respectively. Finally, our modeling results emphasize that for the case of the proposed Phulbari coalmine, there is extremely high prospect for causing massive slope failure along the optimum pit slope angle with 31% if the mine area felt seismic shaking, like the Sikkim (in northern India) earthquake with M6.9 on September 18, 2011.展开更多
In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most crit...In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most critical sources of uncertainty effects on the pit slope design is rock mass geomechanical properties.By comparing the probability of failure resulted from deterministic procedure and probabilistic one,this paper investigated the effects of aforesaid uncertainties on open-pit slope stability in metal mines.In this way,to reduce the effect of variance,it implemented Latin Hypercube Sampling(LHS)technique.Furthermore,a hypothesis test was exerted to compare the effects on two cases in Middle East.Subsequently,the investigation approved high influence of geomechanical uncertainties on overall pit steepness and stability in both iron and copper mines,though on the first case the effects were just over.展开更多
The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is...The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is derived in this paper. It indicates that the deeper the pit is excavated, the greater the critical slide angle is. Both the theory for reducing stripping waste rock in deep pit and the approach to determining the configuration of the stable slope are developed from the interaction. The theory in this paper comprises the preceding principles of stability analysis of slopes and is suitable for analyzing that of deep pit.展开更多
Slope stability on Bong mine is crucial for securing a balance in the gross national product of Liberia. The mine is being operated using conventional open pit methods with slope angles optimally designed to maximize ...Slope stability on Bong mine is crucial for securing a balance in the gross national product of Liberia. The mine is being operated using conventional open pit methods with slope angles optimally designed to maximize ore stripping quantity. However, a working slope has displayed signs of uncertainty. The overall inclination of the slope is 56<span style="white-space:nowrap;">°</span>, and the proposed maximal excavation is 315.42 m, but current depth in ore is approximately 50%. Based on the study of slope geological characteristics, the physical and mechanical parameters of rock mass and the geometrical calculation of stoping, the study is tailored on the mechanism of inspecting stress-strain behavior in response to seasonal variation of rock moisturization as a more suitable means of stope slope stability analysis in this case. This study took full account of local rainfall and other meteorological conditions. Slope stability is investigated via stereographic projections and stability assessment using the Shear Strength Reduction (SSR) method based on FLAC (Fast Lagrangian Analysis of Continua) numerical modeling technique in three dimensions to predict the stress-strain behavior of the open-pit slope and evaluate its stability state. Global stability has been analyzed under natural and saturated conditions and it is found that the slope is critically stable and needs proper attention.展开更多
Rock slope stability is a very important research area for many geo-engineers concerned with civil or mining works.Slope stability of pits,roads,tailings dams and other embankments is very cardinal as it directly impa...Rock slope stability is a very important research area for many geo-engineers concerned with civil or mining works.Slope stability of pits,roads,tailings dams and other embankments is very cardinal as it directly impacts on the working or utilization of these facilities.After a spate slope failures at the Nchanga Open Pits,a challenge arose to investigate the design parameters that have been in use.This research展开更多
In the process of intelligent mine construction in open-pit mine, in order to improve the safety monitoring ability of mine transportation system, solve the problems of large human interference and blind Angle detecti...In the process of intelligent mine construction in open-pit mine, in order to improve the safety monitoring ability of mine transportation system, solve the problems of large human interference and blind Angle detection by existing conventional monitoring methods, this paper establishes an open-pit mine monitoring data set, and proposes a real-time intelligent monitoring model based on UAV. The reasoning component with strong computing power and low power consumption is selected, and the lightweight object detection model is selected for the experiment. A quantitative standard of dynamic energy consumption detection by evaluation algorithm is proposed. Through experimental comparison, it is found that YOLOv4-tiny has the highest comprehensive grade in detection accuracy, speed, energy consumption and other aspects, which is suitable for application in the above model.展开更多
Estimation of stability of natural slopes, embankments, dams and open-pit slopes during earthquakes are complex and non-linear problems, therefore physical modeling is used for decision of it. As a result of physical ...Estimation of stability of natural slopes, embankments, dams and open-pit slopes during earthquakes are complex and non-linear problems, therefore physical modeling is used for decision of it. As a result of physical modeling the pattern of seismic vibrations impact based on the movement process of probable collapse prism delineated by the most stressed plane of sliding has been established. Particular recommendations on the basis of safety factors selection in seismoactive zones are given.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102313 and 52104125)the Fundamental Research Funds for the Central Universities(Grant No.B240201094).
文摘In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.
文摘Mining globally contributes to the growth of many economies of the world. Since its inception, the Zambian mining industry has contributed largely to the country’s economy. The various developments both in technology and knowledge have contributed to the scale at which mining is being done. Challenges in such a setting arise due to the socio-economic and environmental impacts of mining, which create multidimensional problems. The study investigated the importance of engaging stakeholders in progressive rehabilitation programs for large-scale open pit mines, using a case study of the Lumwana Mine and its host community, Manyama. A qualitative approach was used, and data was collected through one-on-one interviews. A combination of convenient and quota sampling was used to engage with host community leaders, professionals and academicians from various fields and institutions. Results showed that most participants had agreed that stakeholder engagement is important for progressive rehabilitation, but the challenge was that the host community and municipal council representatives were not aware of any progressive rehabilitation efforts at Lumwana Mine. This was attributed to a lack of stakeholder engagement and communication of mitigation progress activities by the Lumwana Mine. Results also revealed that the lack of environmental impact assessment regulations to compel companies to involve stakeholders throughout the entire life of the mine other than just at the pre-mining stage led to a lack of compliance and accountability in rehabilitation.
文摘This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.
文摘A type of velocity sensor CD 1, an auto recording instrument on blasting vibration YBJ 1 and a random signal and vibration analysis system (CRAS) were used to monitor the particle vibration induced by blasting at open pit slope in Hainan Iron Mine. The attenuating rules of blasting ground vibration on slope were developed. By means of the analysis and calculation of the blasting vibration data at open pit slope and the vertical particle vibration velocity assessment method based on the concept of vibration strength, the empirical attenuating equations which can be used for predicting and estimating the damage of slope were derived.
文摘In this study,the effect of rock bridges on rock slope stability was investigated by incorporating nonpersistent joint networks in numerical models,and the critical profiles of an open pit mine were analysed.Parallel deterministic networks of infinite and finite lengths,ubiquitous joint network model and Veneziano joint network model were used in order to simulate the rock fractures.Materials were modelled based on the generalised Hoek-Brown and equivalent Mohr-Coulomb failure criteria.The parallel deterministic infinite and the ubiquitous joint network models produced lower safety factors.The introduction of rock bridges along discontinuity planes in the parallel deterministic network and Veneziano joint network models significantly contributed to the stability and strain distribution,which should be considered in stability analysis of rock mass in open pit by rock slope practitioners.The results show the significance of joints in hard rock behaviour and the joints should be included in order to attain practical and realistic simulations.
文摘Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.
文摘The design and practice in supporting the cut slope of an open-pit mine wereintroduced, in which the high pressure grouting method was used in reinforcing the weak formation inthe slopes. Based on a detailed geological survey of the slope, a theoretical analysis was carriedout, and the design parameters were proposed, where the Tresca or Mohr-Coulomb yield criteria wasemployed. A patent technology, named 'Technology of high pressure and multiple grouting in differentlevels within a single hole', was employed in the construction. Anchor bars were also installed asgrouting proceeds. This method combines anchoring and grouting comprehensively and was foundsuccessful in practice.
基金supported by the National Key Research and Development Program of China Grant NO. 2016YFC0600901the Fundamental Research Funds for the Central Universities Grant NO. 2015QB02。
文摘The geological structure of the Changshanhao open-pit mine in Urad Middle Banner,Inner Mongolia,China is extremely complicated,and slope instability has frequently occurred in various forms,such as wedge sliding,bedding sliding,and toppling failure.In order to study the failure mechanisms of these slopes,the geological structure and mechanical rock properties were investigated based on field investigations and laboratory tests.Numerical models for the present mining area and final mining area of the original scheme were established to analyze slope stability.The results showed that the unique geomorphological characteristics of the mining area were generated by geological tectonism,and the north side of the stope is an anti-dip layered rock slope and the south side is a dip layered rock slope.Slope failure is the consequence of endogenic and exogenic integration,including physical and mechanical properties of the rock mass,geological structures such as faults and joints,and human-caused factors such as blasting and excavation disturbances.Then the original excavation scheme was redesigned mainly by optimizing the slope angle and decreasing the final mining depth to maintain slope stability.Finally,the Monte Carlo method was used to analyze the reliability of the slope angle optimization scheme.The open-pit mine excavation plan that meets the stability requirements was obtained eventually.
基金This work was financially supported by the National Natural Science Foundation of China (No. 2004BA615A-05).
文摘Combining the GIS (geographic information systems) grid-based data with four proposed column-based 3D slope stability analysis models, a comprehensive solution of a high-steep open-pit slope has been obtained. For six searching ranges, 19 critical slip surfaces of different sizes have been studied, in which the minimum 3D safety factor is 1.33. Comparison of 3D safety factors of designed and proposed slope plans shows for all the critical slip surfaces for the proposed plan, the smallest 3D safety factor is 1.33 under the most unfavorable condition. This means that the proposed plan of the high slopes, about 600 m, of an open pit (2-5° steeper than designed plan) is feasible.
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
基金financially supported by the National Natural Science Foundation of China (No. 51034005)National High Technology Research and Development Program of China (No. 2012AA062004)Program for New Century Excellent Talents in University of China (No. NCET-13-1022)
文摘To study the stability of the west slope in Buzhaoba Open-Pit Mine and determine the aging stability coefficient during slide mass development, the deformation band of the west slope and the slide mass structure of the 34,600 profile are obtained on the basis of hydrology, geology, and monitoring data.The residual thrust method is utilized to calculate the stability coefficients, which are 1.225 and 1.00 under sound and transfixion conditions, respectively. According to the rock damage and fragmentation and the principle of mechanical parameter degradation, the mechanical models of the slide mass development of the hard and soft rock slopes are established. An integrated model for calculating the slope stability coefficient is built considering water, vibration, and other external factors that pertain to the structural plane damage mechanism and the generating mechanism of the sliding mass. The change curve of the stability coefficient in the slide mass development is obtained from the relevant analyses,and afterwards, the stability control measures are proposed. The analysis results indicate that in the cracking stage of the hard rock, the slope stability coefficient decreases linearly with the increase in the length Lbof the hard rock crack zone. The linear slope is positively correlated to rock cohesion c. In the transfixion stage of the soft rock, the decrease speed of the stability coefficient is positively correlated to the residual strength of the soft rock. When the slope is stable, the stability coefficient is in a quadratic-linear relationship with the decreased height Dh of the side slope and in a linear relationship with anchoring force P.
基金the key project of the National Natural Science Foundation of China (No. 51034005)the Research Fund for the Doctoral Program of Higher Education of China(No.20100095110019)+1 种基金the National‘‘Twelfth Five-Year’’Plan for Science and Technology Support of China(No.2014BAC14B00)the National High Technology Research and Development Program of China(No.2012AA062004)
文摘Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper establishes calculation models for these two marginal costs. The optimizing model for slope cover height can be determined by including marginal cost models in the objective function. The paper has two main contributions:(a) it fully considers redistribution of dumping space in the model;(b) it introduces price fluctuations and cash discounts in the model. We use the typical open-pit mine as an example to test and prove the model. We conclude that a completely covered slope is reasonable in Haerwusu open pit mine; in addition to an increasing price index, the slope cover height can be reduced; and that price changes are one of the most important influencing factors of slope cover height optimization in an open-pit mine.
基金Federal Agency for Support and Evaluation of Graduate Education (CAPES – Brazil, Grant ID 19/2016)Fondation for Research Support of Minas Gerais (FAPEMIG – Brazil)University of New South Wales (UNSW – Australia)
文摘Rock slope hazard assessment is an important part of risk analysis for open pit mines.The main parameters that can lead to rock slope failures are the parameters traditionally used in geomechanical classifications,the slope geometrical parameters and external factors like rainfall and blasting.This paper presents a methodology for a hazard assessment system for open pit mine slopes based on 88 cases collated around the world using principal components analysis,discriminant analysis and confidence ellipses.The historical cases used in this study included copper,gold,iron,diamond,lead and zinc,platinum and claystone mines.The variables used in the assessment methodology are uniaxial compressive strength of intact rock;spacing,persistence,opening,roughness,infilling and orientation of the main discontinuity set;weathering of the rock mass;groundwater;blasting method;and height and inclination of the pit.While principal component analysis was used to quantify the data,the discriminant analysis was used to establish a rule to classify new slopes about its stability condition.To provide a practical hazard assessment system,confidence ellipses were used to propose a hazard graph and generate the HAS-Q.The discriminant rule developed in this research has a high discrimination capacity with an error rate of 11.36%.
文摘The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety factor of the pit slope of a coal mine in Bangladesh. In the present analyses, two types of models have been presented. The first model estimates safety factor without seismic effect on the overall pit slope of the model; the second model incorporates safety factor with seismic stability of the model. The calculated optimum slope angle of the first model is 31% with a rational safety factor of 1.51, prior to the seismic effect. However, the value is reduced to 0.93, 0.82, and 0.72, after we applies the seismic effect in the second model with M6, M6.5, and M7, respectively. Finally, our modeling results emphasize that for the case of the proposed Phulbari coalmine, there is extremely high prospect for causing massive slope failure along the optimum pit slope angle with 31% if the mine area felt seismic shaking, like the Sikkim (in northern India) earthquake with M6.9 on September 18, 2011.
文摘In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most critical sources of uncertainty effects on the pit slope design is rock mass geomechanical properties.By comparing the probability of failure resulted from deterministic procedure and probabilistic one,this paper investigated the effects of aforesaid uncertainties on open-pit slope stability in metal mines.In this way,to reduce the effect of variance,it implemented Latin Hypercube Sampling(LHS)technique.Furthermore,a hypothesis test was exerted to compare the effects on two cases in Middle East.Subsequently,the investigation approved high influence of geomechanical uncertainties on overall pit steepness and stability in both iron and copper mines,though on the first case the effects were just over.
文摘The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is derived in this paper. It indicates that the deeper the pit is excavated, the greater the critical slide angle is. Both the theory for reducing stripping waste rock in deep pit and the approach to determining the configuration of the stable slope are developed from the interaction. The theory in this paper comprises the preceding principles of stability analysis of slopes and is suitable for analyzing that of deep pit.
文摘Slope stability on Bong mine is crucial for securing a balance in the gross national product of Liberia. The mine is being operated using conventional open pit methods with slope angles optimally designed to maximize ore stripping quantity. However, a working slope has displayed signs of uncertainty. The overall inclination of the slope is 56<span style="white-space:nowrap;">°</span>, and the proposed maximal excavation is 315.42 m, but current depth in ore is approximately 50%. Based on the study of slope geological characteristics, the physical and mechanical parameters of rock mass and the geometrical calculation of stoping, the study is tailored on the mechanism of inspecting stress-strain behavior in response to seasonal variation of rock moisturization as a more suitable means of stope slope stability analysis in this case. This study took full account of local rainfall and other meteorological conditions. Slope stability is investigated via stereographic projections and stability assessment using the Shear Strength Reduction (SSR) method based on FLAC (Fast Lagrangian Analysis of Continua) numerical modeling technique in three dimensions to predict the stress-strain behavior of the open-pit slope and evaluate its stability state. Global stability has been analyzed under natural and saturated conditions and it is found that the slope is critically stable and needs proper attention.
文摘Rock slope stability is a very important research area for many geo-engineers concerned with civil or mining works.Slope stability of pits,roads,tailings dams and other embankments is very cardinal as it directly impacts on the working or utilization of these facilities.After a spate slope failures at the Nchanga Open Pits,a challenge arose to investigate the design parameters that have been in use.This research
文摘In the process of intelligent mine construction in open-pit mine, in order to improve the safety monitoring ability of mine transportation system, solve the problems of large human interference and blind Angle detection by existing conventional monitoring methods, this paper establishes an open-pit mine monitoring data set, and proposes a real-time intelligent monitoring model based on UAV. The reasoning component with strong computing power and low power consumption is selected, and the lightweight object detection model is selected for the experiment. A quantitative standard of dynamic energy consumption detection by evaluation algorithm is proposed. Through experimental comparison, it is found that YOLOv4-tiny has the highest comprehensive grade in detection accuracy, speed, energy consumption and other aspects, which is suitable for application in the above model.
文摘Estimation of stability of natural slopes, embankments, dams and open-pit slopes during earthquakes are complex and non-linear problems, therefore physical modeling is used for decision of it. As a result of physical modeling the pattern of seismic vibrations impact based on the movement process of probable collapse prism delineated by the most stressed plane of sliding has been established. Particular recommendations on the basis of safety factors selection in seismoactive zones are given.