Based on the elongated Kelvin model, the effect of microstructure on the uniaxial strength asymmetry of open-cell foams is investigated. The results indicate that this asymmetry depends on the relative density, the so...Based on the elongated Kelvin model, the effect of microstructure on the uniaxial strength asymmetry of open-cell foams is investigated. The results indicate that this asymmetry depends on the relative density, the solid material, the cell morphology, and the strut geometry of open-cell foams. Even though the solid material has the same tensile and compressive strength, the tensile and compressive strength of open-cell foams with asymmetrical sectional struts are still different. In addition, with the increasing degree of anisotropy, the uniaxial strength as well as the strength asymmetry increases in the rise direction but reduces in the transverse direction. Moreover, the plastic collapse ratio between two directions is verified to depend mainly on the cell morphology. The predicted results are compared with Gibson and Ashby's theoretical results as well as the experimental data reported in the literature, which validates that the elongated Kelvin model is accurate in explaining the strength asymmetry presented in realistic open-cell foams.展开更多
Based on the elongated Kelvin obtained to investigate the tensile behavior Kelvin model's periodicity and symmetry in model, a simplified periodic structural cell is of anisotropic open-cell elastic foams due to the ...Based on the elongated Kelvin obtained to investigate the tensile behavior Kelvin model's periodicity and symmetry in model, a simplified periodic structural cell is of anisotropic open-cell elastic foams due to the whole space. The half-strut element and elastic deflection theory are used to analyze the tensile response as done in the previous studies. This study produces theoretical expressions for the tensile stress-strain curve in the rise and transverse directions. In addition, the theoretical results are examined with finite element simulation using an existing formula. The results indicate that the theoretical analysis agrees with the finite element simulation when the strain is not too high, and the present model is better. At the same time, the anisotropy ratio has a significant effect on the mechanical properties of foams. As the anisotropy ratio increases, the tensile stress is improved in the rising direction but drops in the transverse direction under the same strain.展开更多
Foamed zinc was prepared by infiltration casting process.The mechanical properties and corrosion resistance of the samples were studied,and the feasibility of the foamed zinc as a bone implant material was discussed.A...Foamed zinc was prepared by infiltration casting process.The mechanical properties and corrosion resistance of the samples were studied,and the feasibility of the foamed zinc as a bone implant material was discussed.All the compression stress-strain curves of open-cell zinc foams with various cell size(1-4 mm)and porosity(55%-67%)show three stages:elastic stage,plastic stage,and densification stage.The compression strength increases with decreasing density.The smooth stress-strain response indicates a progressively deformation of open-cell zinc foam.In addition,the cell wall or edge bending and fracture are the dominated mechanisms for failure of open cell zinc foam.The immersion test for determining the corrosion rate of open cell zinc foam was conducted in simulated body fluid.It was found that zinc foam with a small cell size and high porosity showed a higher corrosion rate.In addition,open-cell zinc foams can effectively induce Ca-P deposition in immersion tests,showing good bioactivity.Therefore,the open cell zinc foam prepared in this experiment has a good potential application as a human bone substitute material.展开更多
The compressive experiments of two kinds of ceramic foams were completed. The results show that the behavior of ceramic foams made by organic filling method is anisotropic. The stress-strain responses of ceramic foams...The compressive experiments of two kinds of ceramic foams were completed. The results show that the behavior of ceramic foams made by organic filling method is anisotropic. The stress-strain responses of ceramic foams made by sponge-replication show isotropy and strain rate dependence. The struts brittle breaking of net structure of this ceramic foam arises at the weakest defects of framework or at the part of framework, which causes the initiation and expanding of cracks. The compressive strength of ceramic foam is dependent on the strut size and relative density of foams.展开更多
Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures w...Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures were coldcompacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere.The effects of severalparameters including precursor compaction pressure,foaming agent content as well as temperature and time of the foaming processon the cell microstructure,linear expansion,relative density and compressive properties were investigated.A uniform distribution ofcells with sizes less than100μm,which form semi open-cell structures with relative densities in the range of55.4%-84.4%,wasobtained.The elevation of compaction pressure between127-318MPa and blowing agent up to15%(mass fraction)led to anincrease in the linear expansion,compressive strength and densification strain.By varying the foaming temperature from800to1000°C,all of the investigated parameters increased except compressive strength and relative density.The results indicated theoptimal foaming temperature and time as900°C and10-25min,respectively.展开更多
A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or exc...A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or excessive infiltrating can hardly be found in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit excellent mechanical properties. The void content strongly affects the mechanical properties of aluminum foams. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature and increasing packing pressure are effective to lower the void content in aluminum foams.展开更多
Microstructure and mechanical properties of lost foam cast aluminum alloys have been investigated in both primary A356(0.13% Fe) and secondary 356(0.47%). As expected, secondary 356 shows much higher content of Fe-ric...Microstructure and mechanical properties of lost foam cast aluminum alloys have been investigated in both primary A356(0.13% Fe) and secondary 356(0.47%). As expected, secondary 356 shows much higher content of Fe-rich intermetallic phases, and in particular the porosity in comparison with primary A356. The average area percent and size(length) of Fe-rich intermetallics change from about 0.5% and 6 μm in A356 to 2% and 25 μm in 356 alloy. The average area percent and maximum size of porosity also increase from about 0.4% and 420 μm to 1.4% and 600 μm, respectively. As a result, tensile ductility decreases about 60% and ultimate tensile strength declines about 8%. Lower fatigue strength was also experienced in the secondary 356 alloy. Low cycle fatigue(LCF) strength decreased from 187 MPa in A356 to 159 MPa in 356 and high cycle fatigue(HCF) strength also declined slightly from 68 MPa to 64 MPa.展开更多
By elongating the regular Kelvin model in one direction and keeping unchanged in the other two directions,the anisotropic model was constructed.Then,the simplified periodic structural cell was obtained according to th...By elongating the regular Kelvin model in one direction and keeping unchanged in the other two directions,the anisotropic model was constructed.Then,the simplified periodic structural cell was obtained according to the periodicity and symmetry of the model in the whole space.Using the half-strut element and elastic deflection theory to analyze the mechanical behavior as were adopted in the previous studies,this paper obtained the theoretical expressions for the compressive stress and strain as well as the corresponding curves in the rise and transverse directions.In addition,the theoretical results were examined by the finite element simulation.Results indicated that the theoretical analysis was very close to the finite element simulation when the strain was not too high,which confirmed the validity of theoretical analysis.At the same time,the anisotropy was shown to have a significant effect on the mechanical properties of open-cell foams.As the anisotropy ratio increased,the compressive stress was improved in the rise direction but dropped in the transverse direction under the same strain.展开更多
Open-cell metallic foams or porous metals have a distinctive combination of excellent structural performance and superior functional characteristics,such as their light weight,energy absorption,sound absorption,heat d...Open-cell metallic foams or porous metals have a distinctive combination of excellent structural performance and superior functional characteristics,such as their light weight,energy absorption,sound absorption,heat dissipation,and electromagnetic shielding.As a primary representative of metallic foams,aluminum foam has developed into a new engineering material with many unique applications in the fields of aerospace,automotive industry,petrochemical industry,building materials,and etc.This paper summarizes the fabrication methods,properties,and applications of open-cell aluminum foams.The current status and development trends are also introduced.展开更多
In this study, Y-and Ce-modified Cr coatings applied by pack cementation method were prepared on the surface of open-cell nickel-based alloy foam. The morphologies and microstructures of Y- and Ce-modified Cr coatings...In this study, Y-and Ce-modified Cr coatings applied by pack cementation method were prepared on the surface of open-cell nickel-based alloy foam. The morphologies and microstructures of Y- and Ce-modified Cr coatings with various Y and Ce contents were investigated in detail. Then, the effects of Y and Ce addition on the mechanical properties of open-cell nickel-based alloy foams were analyzed and compared. Simultaneously, the energy absorption capacity and energy absorption efficiency of the Y- and Ce-modified Cr coated alloy foams were discussed and compared at the room and high temperatures. The results show that Cr coatings containing minor amounts of rare earth element (Y and Ce) are well adhered to the nickel-based foam struts. Especially, the microstructure of the 2 wt% Ce-modified Cr coating is denser and uniform. In addition, the compressive strength and plateau stress of Y- and Ce-modified Cr coated alloy foams firstly increase and then decrease by increasing the Y and Ce contents at room and high temperatures. The energy absorption capacity of Y/Cr and Ce/Cr coated alloy foams increases linearly with the strains increasing. The Ce/Cr coated alloy foams can absorb more energy than Y/Cr coated alloy foams in the plateau and densification regions at room temperature. Compared to those at room temperature, the Y- and Ce-modified Cr coated alloy foams show higher energy absorption efficiency when deforma- tion within 10%-30% at high temperature.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11472025 and 11272030)
文摘Based on the elongated Kelvin model, the effect of microstructure on the uniaxial strength asymmetry of open-cell foams is investigated. The results indicate that this asymmetry depends on the relative density, the solid material, the cell morphology, and the strut geometry of open-cell foams. Even though the solid material has the same tensile and compressive strength, the tensile and compressive strength of open-cell foams with asymmetrical sectional struts are still different. In addition, with the increasing degree of anisotropy, the uniaxial strength as well as the strength asymmetry increases in the rise direction but reduces in the transverse direction. Moreover, the plastic collapse ratio between two directions is verified to depend mainly on the cell morphology. The predicted results are compared with Gibson and Ashby's theoretical results as well as the experimental data reported in the literature, which validates that the elongated Kelvin model is accurate in explaining the strength asymmetry presented in realistic open-cell foams.
基金Project supported by the National Natural Science Foundation of China(Nos.11472025 and 11272030)
文摘Based on the elongated Kelvin obtained to investigate the tensile behavior Kelvin model's periodicity and symmetry in model, a simplified periodic structural cell is of anisotropic open-cell elastic foams due to the whole space. The half-strut element and elastic deflection theory are used to analyze the tensile response as done in the previous studies. This study produces theoretical expressions for the tensile stress-strain curve in the rise and transverse directions. In addition, the theoretical results are examined with finite element simulation using an existing formula. The results indicate that the theoretical analysis agrees with the finite element simulation when the strain is not too high, and the present model is better. At the same time, the anisotropy ratio has a significant effect on the mechanical properties of foams. As the anisotropy ratio increases, the tensile stress is improved in the rising direction but drops in the transverse direction under the same strain.
基金Key Research and Development Program of Liaoning Province(2019JH2/10100008)the Plan for Innovative Talents in Liaoning Higher Education Institutions(LR2018011)the Plan for Young and Middle-aged Science and Technology Innovation Talent of Shenyang(RC170204).
文摘Foamed zinc was prepared by infiltration casting process.The mechanical properties and corrosion resistance of the samples were studied,and the feasibility of the foamed zinc as a bone implant material was discussed.All the compression stress-strain curves of open-cell zinc foams with various cell size(1-4 mm)and porosity(55%-67%)show three stages:elastic stage,plastic stage,and densification stage.The compression strength increases with decreasing density.The smooth stress-strain response indicates a progressively deformation of open-cell zinc foam.In addition,the cell wall or edge bending and fracture are the dominated mechanisms for failure of open cell zinc foam.The immersion test for determining the corrosion rate of open cell zinc foam was conducted in simulated body fluid.It was found that zinc foam with a small cell size and high porosity showed a higher corrosion rate.In addition,open-cell zinc foams can effectively induce Ca-P deposition in immersion tests,showing good bioactivity.Therefore,the open cell zinc foam prepared in this experiment has a good potential application as a human bone substitute material.
文摘The compressive experiments of two kinds of ceramic foams were completed. The results show that the behavior of ceramic foams made by organic filling method is anisotropic. The stress-strain responses of ceramic foams made by sponge-replication show isotropy and strain rate dependence. The struts brittle breaking of net structure of this ceramic foam arises at the weakest defects of framework or at the part of framework, which causes the initiation and expanding of cracks. The compressive strength of ceramic foam is dependent on the strut size and relative density of foams.
文摘Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures were coldcompacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere.The effects of severalparameters including precursor compaction pressure,foaming agent content as well as temperature and time of the foaming processon the cell microstructure,linear expansion,relative density and compressive properties were investigated.A uniform distribution ofcells with sizes less than100μm,which form semi open-cell structures with relative densities in the range of55.4%-84.4%,wasobtained.The elevation of compaction pressure between127-318MPa and blowing agent up to15%(mass fraction)led to anincrease in the linear expansion,compressive strength and densification strain.By varying the foaming temperature from800to1000°C,all of the investigated parameters increased except compressive strength and relative density.The results indicated theoptimal foaming temperature and time as900°C and10-25min,respectively.
基金Project (51074185) supported by the National Natural Science Foundation of ChinaProjects (CX2009B037, CX2010B120) supported by Doctor Innovative Program of Hunan Province, China
文摘A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or excessive infiltrating can hardly be found in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit excellent mechanical properties. The void content strongly affects the mechanical properties of aluminum foams. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature and increasing packing pressure are effective to lower the void content in aluminum foams.
文摘Microstructure and mechanical properties of lost foam cast aluminum alloys have been investigated in both primary A356(0.13% Fe) and secondary 356(0.47%). As expected, secondary 356 shows much higher content of Fe-rich intermetallic phases, and in particular the porosity in comparison with primary A356. The average area percent and size(length) of Fe-rich intermetallics change from about 0.5% and 6 μm in A356 to 2% and 25 μm in 356 alloy. The average area percent and maximum size of porosity also increase from about 0.4% and 420 μm to 1.4% and 600 μm, respectively. As a result, tensile ductility decreases about 60% and ultimate tensile strength declines about 8%. Lower fatigue strength was also experienced in the secondary 356 alloy. Low cycle fatigue(LCF) strength decreased from 187 MPa in A356 to 159 MPa in 356 and high cycle fatigue(HCF) strength also declined slightly from 68 MPa to 64 MPa.
基金supported by the National Natural Science Foundation of China (Grant No.10572013,10932001)the Common Construction Project of Education Committee of Beijing (GrantNo.XK100060522)
文摘By elongating the regular Kelvin model in one direction and keeping unchanged in the other two directions,the anisotropic model was constructed.Then,the simplified periodic structural cell was obtained according to the periodicity and symmetry of the model in the whole space.Using the half-strut element and elastic deflection theory to analyze the mechanical behavior as were adopted in the previous studies,this paper obtained the theoretical expressions for the compressive stress and strain as well as the corresponding curves in the rise and transverse directions.In addition,the theoretical results were examined by the finite element simulation.Results indicated that the theoretical analysis was very close to the finite element simulation when the strain was not too high,which confirmed the validity of theoretical analysis.At the same time,the anisotropy was shown to have a significant effect on the mechanical properties of open-cell foams.As the anisotropy ratio increased,the compressive stress was improved in the rise direction but dropped in the transverse direction under the same strain.
基金financially supported by the National Natural Science Foundation of China(No.51771101)。
文摘Open-cell metallic foams or porous metals have a distinctive combination of excellent structural performance and superior functional characteristics,such as their light weight,energy absorption,sound absorption,heat dissipation,and electromagnetic shielding.As a primary representative of metallic foams,aluminum foam has developed into a new engineering material with many unique applications in the fields of aerospace,automotive industry,petrochemical industry,building materials,and etc.This paper summarizes the fabrication methods,properties,and applications of open-cell aluminum foams.The current status and development trends are also introduced.
基金financially supported by the National Natural Science Foundation of China (Nos.51501133 and 51405358)the China Automobile Industry Innovation and Development Joint Fund (No.U1564202)+1 种基金the Natural Science Foundation of Hubei Province (No.2016CFC773)the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology (No.AWJ-M16-11)
文摘In this study, Y-and Ce-modified Cr coatings applied by pack cementation method were prepared on the surface of open-cell nickel-based alloy foam. The morphologies and microstructures of Y- and Ce-modified Cr coatings with various Y and Ce contents were investigated in detail. Then, the effects of Y and Ce addition on the mechanical properties of open-cell nickel-based alloy foams were analyzed and compared. Simultaneously, the energy absorption capacity and energy absorption efficiency of the Y- and Ce-modified Cr coated alloy foams were discussed and compared at the room and high temperatures. The results show that Cr coatings containing minor amounts of rare earth element (Y and Ce) are well adhered to the nickel-based foam struts. Especially, the microstructure of the 2 wt% Ce-modified Cr coating is denser and uniform. In addition, the compressive strength and plateau stress of Y- and Ce-modified Cr coated alloy foams firstly increase and then decrease by increasing the Y and Ce contents at room and high temperatures. The energy absorption capacity of Y/Cr and Ce/Cr coated alloy foams increases linearly with the strains increasing. The Ce/Cr coated alloy foams can absorb more energy than Y/Cr coated alloy foams in the plateau and densification regions at room temperature. Compared to those at room temperature, the Y- and Ce-modified Cr coated alloy foams show higher energy absorption efficiency when deforma- tion within 10%-30% at high temperature.
文摘采用低密度、大比表面积的纳米Si O2为成核剂,乙烯-醋酸乙烯共聚物/丁腈橡胶(EVA/NBR)为增韧体,通过模压交联发泡制备了高弹性的聚丙烯(PP)发泡材料。研究了EVA、NBR添加量对PP发泡工艺与性能的影响。通过力学性能测试及形貌分析,考察了制备高弹性发泡PP的最佳工艺条件。实验结果表明,当EVA、NBR含量均为12.5%时,发泡PP综合性能最佳,拉伸强度为25 MPa,断裂伸长率为6.8%,冲击强度达到10.9 k J/m2,维卡软化温度为146.8℃。