期刊文献+
共找到1,261篇文章
< 1 2 64 >
每页显示 20 50 100
Preparation of open-celled aluminum foams by counter-gravity infiltration casting 被引量:5
1
作者 HUO Deng-wei YANG Juan +2 位作者 ZHOU Xiang-yang WANG Hui ZHANG Tai-kang 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期85-89,共5页
A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or exc... A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or excessive infiltrating can hardly be found in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit excellent mechanical properties. The void content strongly affects the mechanical properties of aluminum foams. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature and increasing packing pressure are effective to lower the void content in aluminum foams. 展开更多
关键词 open-celled aluminum foams counter-gravity infiltration casting void content mechanical properties
下载PDF
Thermal properties of open-celled aluminum foams prepared by two infiltration casting methods 被引量:2
2
作者 王辉 周向阳 +2 位作者 龙波 文康 杨焘 《Journal of Central South University》 SCIE EI CAS 2014年第7期2567-2571,共5页
Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental resu... Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental results show that the thermal conductivity coefficients of aluminum foams prepared by two different infiltration methods have similar increasing trend with the increase of particle size;along with the reducing porosity,the thermal conductivity coefficients will be enhanced oppositely.However,with the same particle size,the open-celled aluminum foam prepared by the former method has a higher thermal conductivity coefficient obviously.It is largely because that the sample prepared by counter-gravity infiltration casting has a lower void content and better dense crystallization of metal-matrix after the constant pressure process. 展开更多
关键词 open-celled aluminum foams counter-gravity infiltration casting thermal conductivity coefficient particle size POROSITY
下载PDF
Proposal of Equivalent Porosity Indicator for Foam Aluminum Based on GRNN
3
作者 Wenhao Da Lucai Wang +3 位作者 Yanli Wang Xiaohong You Wenzhan Huang Fang Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期16-31,共16页
To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these in... To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these indicators in analyzing foam aluminum's performance is limited.This study employs the Generalized Regression Neural Network(GRNN)method to establish a model that links foam aluminum's microstructure characterization data with its mechanical properties.Through the GRNN model,researchers extracted four of the most crucial features and their corresponding weight values from the 13 pore characteristics of foam aluminum.Subsequently,a new characterization formula,called“Wang equivalent porosity”(WEP),was developed by using residual weights assigned to the feature weights,and four parameter coefficients were obtained.This formula aims to represent the relationship between foam aluminum's microstructural features and its mechanical performance.Furthermore,the researchers conducted model verification using compression data from 11 sets of foam aluminum.The validation results showed that among these 11 foam aluminum datasets,the Gibson-Ashby formula yielded anomalous results in two cases,whereas WEP exhibited exceptional stability without any anomalies.In comparison to the Gibson-Ashby formula,WEP demonstrated an 18.18%improvement in evaluation accuracy. 展开更多
关键词 aluminum foam characterization index importance analysis feature learning
下载PDF
Effects of heat treatment on dynamic compressive properties and energy absorption characteristics of open-cell aluminum alloy foams 被引量:6
4
作者 曹晓卿 王志华 +2 位作者 马宏伟 赵隆茂 杨桂通 《中国有色金属学会会刊:英文版》 CSCD 2006年第1期159-163,共5页
The effects of heat treatment on the dynamic compressive properties and energy absorption characteristics of open cell aluminum alloy foams (Al-Mg-Si alloy foam and Al-Cu-Mg alloy foam) produced by infiltrating proces... The effects of heat treatment on the dynamic compressive properties and energy absorption characteristics of open cell aluminum alloy foams (Al-Mg-Si alloy foam and Al-Cu-Mg alloy foam) produced by infiltrating process were studied. Two kinds of heat treatment were exploited: age-hardening and solution heat treating plus age-hardening (T6). The split Hopkinson pressure bar (SHPB) was used for high strain rate compression test. The results show that both age-hardened and T6-strengthened foams exhibit improved compression strength and shortened plateau region compared with that of foams in as-fabricated state under high strain rate compression, and the energy absorption capacity is also influenced significantly by heat treatment. It is worthy to note that omitting the solution treating can also improve the strength and energy absorbed much. 展开更多
关键词 铝合金 泡沫金属 热处理 压缩性能 能量吸收
下载PDF
Fabrication and compressive behavior of open-cell aluminum foams via infiltration casting using spherical CaCl_(2) space-holders
5
作者 Tan Wan Gang-qiang Liang +2 位作者 Zhao-ming Wang Can-xu Zhou Yuan Liu 《China Foundry》 SCIE CAS 2022年第2期89-98,共10页
The infiltration casting fabrication process based on spherical CaCl_(2) space-holders and the compressive behavior including the mechanical performance and energy absorption capacity of open-cell aluminum foams were ... The infiltration casting fabrication process based on spherical CaCl_(2) space-holders and the compressive behavior including the mechanical performance and energy absorption capacity of open-cell aluminum foams were investigated.Open-cell aluminum foams with different porosities in the range of 63.1%to 87.3%can be fabricated by adjusting compression ratios of CaCl_(2) preforms prepared by precision hot-pressing.The compression tests show that a strain-hardening phenomenon always occurs especially for open-cell aluminum foam with low porosity,resulting in the inclining stress-strain curve in the plateau region.The energy absorption capacity of open-cell aluminum foam decreases with increasing porosity when compared at the same strain.However,when compared at a given stress,each foam can absorb the maximal energy among the five foams in a special stress range.Additionally,open-cell aluminum foam possesses the maximum energy absorption efficiency at its optimum operating stress.At this stress condition,the foam can absorb the highest energy compared with other foams at the same stress point.The optimum operating stress and the corresponding maximal energy absorption decrease with increasing the porosity.The optimum operating stress for energy absorption can also be determined similarly when taking into consideration of the lightweight extent of foams. 展开更多
关键词 open-cell aluminum foam CaCl_(2)space-holder infiltration casting energy absorption
下载PDF
Preparation and characterization of aluminum foams with ZrH_2 as foaming agent 被引量:7
6
作者 李大武 李杰 +3 位作者 李涛 孙挺 张小明 姚广春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期346-352,共7页
Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with ... Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with content of 0.6%-1.4% (mass fraction) was added to the molten pure aluminum and the foaming condition was controlled in a temperature range from 933 to 1 013 K, Ca amount of 1.5%-3.0% (mass fraction), stirring time of 0.5-2.5 min and holding time of 1.5-4.0 min to obtain homogeneous aluminum foams. The fabricated aluminum foams were characterized by XRD, SEM and Image-pro plus. The mechanical properties of the aluminum foams with different relative density were tested. The result indicates that the foaming agent (ZrH2) is suitable for the preparation of small aperture aluminum foams with average pore diameter of 1 mm. Inter-metallic compounds and Al2O3 have effect on the melt viscosity. The aluminum foams experience linear elastic, platforms and densification process and had a higher efficiency of energy absorption. 展开更多
关键词 aluminum foams zirconium hydride BUBBLE melt-based route
下载PDF
Oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:3
7
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2429-2437,共9页
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ... Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed. 展开更多
关键词 aluminum foam gas injection foaming process oxide film foam stability mechanism
下载PDF
Oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:1
8
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2781-2788,共8页
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron ... In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation. 展开更多
关键词 aluminum foam gas injection foaming process oxide film oxidation kinetics
下载PDF
Effects of cell wall property on compressive performance of aluminum foams 被引量:4
9
作者 袁建宇 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1619-1625,共7页
The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and nume... The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and numerically. Foam specimens prepared from conditioned melt were tested under uniaxial compressive loading condition. The cell wall microstructure and fracture were observed through optical microscope(OM) and scanning electron microscope(SEM), which indicates that the cell wall property is impaired by the defects in cell walls and oxide films on the cell wall surface. Subsequently, finite element(FE) models based on three-dimensional thin shell Kelvin tetrakaidecahedron were developed based on the mechanical properties of the raw material and solid material that are determined by using experimental measurements. The simulation results show that the plateau stress of the nominal stress-strain curve exhibits a linear relationship with the yield strength of the cell wall material. The simulation plateau stress is higher than the experimental data, partly owing to the substitution of solid material for cell wall material in the process of the establishment of FE models. 展开更多
关键词 aluminum foams cell wall property uniaxial compressive performance FE analysis
下载PDF
Effects of foaming parameters on microstructure and compressive properties of aluminum foams produced by powder metallurgy method 被引量:6
10
作者 T.GERAMIPOUR H.OVEISI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1569-1579,共11页
Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures w... Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures were coldcompacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere.The effects of severalparameters including precursor compaction pressure,foaming agent content as well as temperature and time of the foaming processon the cell microstructure,linear expansion,relative density and compressive properties were investigated.A uniform distribution ofcells with sizes less than100μm,which form semi open-cell structures with relative densities in the range of55.4%-84.4%,wasobtained.The elevation of compaction pressure between127-318MPa and blowing agent up to15%(mass fraction)led to anincrease in the linear expansion,compressive strength and densification strain.By varying the foaming temperature from800to1000°C,all of the investigated parameters increased except compressive strength and relative density.The results indicated theoptimal foaming temperature and time as900°C and10-25min,respectively. 展开更多
关键词 aluminum foam powder metallurgy CACO3 foaming agent semi open-cell microstructure EXPANSION compressive properties
下载PDF
PREPARATION OF THE OPEN PORE ALUMINUM FOAMS USING INVESTMENT CASTING PROCESS 被引量:3
11
作者 L.C. Wang and F. Wang (Taiyuan Heavy Machinery Institute, Taiyuan 030024, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第1期27-32,共6页
This paper briefly presents characteristics, application and development of the metallic foams. Sound specimen has been achieved with prepared foam aluminum by using investment casting process. The preparation of plas... This paper briefly presents characteristics, application and development of the metallic foams. Sound specimen has been achieved with prepared foam aluminum by using investment casting process. The preparation of plaster prefabricated mould is one key in investment casting. Main composition, ingredient and affecting factors of plaster mould are also discussed and the vacuum-infiltrated shaping technique is found to be another important link. The penetration model and the affecting mechanism of the main parameters are also analyzed. As a result, the optimum values are determined. 展开更多
关键词 aluminum alloys foamed products foams MOLDS PLASTER
下载PDF
Novel foaming agent used in preparation process of aluminum foams 被引量:4
12
作者 Xiangyang Zhou Xiquan Liu Jie Li Hongzhuan Liu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期735-739,共5页
The performances of a novel foaming agent used in the preparation process of aluminum foams were investigated, and the effects of some factors, such as addition of the foaming agent, foaming temperature on the porosit... The performances of a novel foaming agent used in the preparation process of aluminum foams were investigated, and the effects of some factors, such as addition of the foaming agent, foaming temperature on the porosity, and appearance of aluminum foams were also discussed. Experimental results show that the novel foaming agent has a wide decomposition temperature range and a mild decomposed rate; the foaming agent has the ability to enhance the viscosity of aluminum melt, as a result, an extra viscosifier such as Ca or SiCp is unnecessary while using this foaming agent; the bubble-free zone in material decreases and the foaming effi- ciency increases with the increase of foaming agent; the bubble-free zone disappears and the foaming efficiency is near 100% when the addition of foaming agent is more than 1.4wt%; the porosity of the aluminum foam increases with the increase of foaming agent when the addition of foaming agent is less than 2.2wt%. 展开更多
关键词 aluminum foam foaming agent POROSITY VISCOSITY foaming efficiency
下载PDF
THE STRUCTURE CONTROL OF ALUMINUM FOAMS PRODUCED BY POWDER COMPACTED FOAMING PROCESS 被引量:4
13
作者 X.H.You F. Wang L.C.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第3期279-282,共4页
A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subseq... A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature. 展开更多
关键词 aluminum foams powder compact foaming process foam structure
下载PDF
Numerical Modeling of the Compression Process of Elastic Open-cell Foams 被引量:6
14
作者 ZHANG Jia-lei LU Zi-xing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第3期215-222,共8页
The random models of open-cell foams that can reflect the actual cell geometrical properties are constructed with the Voronoi technique. The compression process of elastic open-cell foams is simulated with the nonline... The random models of open-cell foams that can reflect the actual cell geometrical properties are constructed with the Voronoi technique. The compression process of elastic open-cell foams is simulated with the nonlinear calculation module of finite element analysis program. In order to get the general results applicable to this kind of materials, the dimensionless compressive stress is used and the stress-strain curves of foam models with different geometrical properties are obtained. Then, the influences of open-cell geometrical properties, including the shape of strut cross section, relative density and cell shape irregularity, on the compressive nonlinear mechani- cal performance are analyzed. In addition, the numerical results are compared with the predicted results of cubic staggering model. Nu- merical results indicate that the simulated results reflect the compressive process of foams quite well and the geometrical properties of cell have significant influences on the nonlinear mechanical behavior of foams. 展开更多
关键词 Voronoi technique open-cell foam NONLINEAR compressive stress
下载PDF
A three dimensional modeling method for spherical open cell aluminum foams based on spherical core stratification algorithm 被引量:2
15
作者 Ming-si Qi Wei Zhang +3 位作者 Jun-yuan Wang Guang-ming Ren Yi-ping Yin Chun-Xue Lu 《China Foundry》 SCIE 2019年第4期248-255,共8页
Because of the complexity and irregularity of the internal structure of aluminum foam, it is difficult to establish a three-dimensional model that can accurately reflect this structure. In this study, an algorithm, na... Because of the complexity and irregularity of the internal structure of aluminum foam, it is difficult to establish a three-dimensional model that can accurately reflect this structure. In this study, an algorithm, named spherical core stratification algorithm, for three-dimensional modeling of spherical aluminum foam was proposed, and by using this algorithm, a three-dimensional model for sphere aluminum foam with random pores has been successfully constructed. The constructed model not only has a high similarity with the real structure of spherical open cell aluminum foam, but also can match its pore size and thickness by adjusting the size and number of holes in the random pore. In order to verify the feasibility of the modeling method, firstly, the three-dimensional model of the cylindrical spherical aluminum foam with a size of Φ35 mm × 20 mm and pore diameter of 5 mm has been generated by using the new algorithm. Secondly, taking the influence of relative density and shape function on the compressive properties of spherical open cell aluminum foams into consideration, a quasi-static constitutive model suitable for the material has been established based on the Sherwood-Frost classical compression constitutive model, which provides material parameters for quasi-static compression simulation. The comparison results show that the established constitutive equation has a good fit with the experiment, with a fitting correlation coefficient of above 0.99. Finally, the quasi-static compression simulation was carried out by ABAQUS, and the simulated nominal stress-strain curve was obtained. The simulation results indicate that the simulated stressstrain curve had the same trend with the one obtained by the quasi-static compression experiment with a small deviation. 展开更多
关键词 aluminum foam STATIC compression CONSTITUTIVE EQUATION 3D modeling numerical simulation
下载PDF
Thermal properties of closed-cell aluminum foams prepared by melt foaming technology 被引量:3
16
作者 Hui WANG Xiang-yang ZHOU +2 位作者 Bo LONG Juan YANG Hong-zhuan LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3147-3153,共7页
Closed-cell aluminum foam has incomparable advantages over other traditional materials for thermal insulation and heatpreservation because of small thermal conductivity coefficient. Spherical bubble three-dimensional ... Closed-cell aluminum foam has incomparable advantages over other traditional materials for thermal insulation and heatpreservation because of small thermal conductivity coefficient. Spherical bubble three-dimensional model of aluminum foam is builtto deduce the relationship among pore wall thickness, porosity and average pore size. Non-uniform closed-cell foam aluminummodel with different structural parameters and random pore distribution is established based on the relationship via C programminglanguage. And the temperature distribution is analyzed with ANSYS software. Results indicate that thermal conductivity increaseswith the reducing of porosity. For the aluminum foam with the same porosity, different pore distributions result in different thermalconductivities. The temperature distribution in aluminum foam is non-uniform, which is closely related with the pore size anddistribution. The pores which extend or distribute along the direction perpendicular to heat flow strengthen obstructive capability forheat flow. When pores connect along the direction perpendicular to heat flow, a “wall of high thermal resistance” appears to declinethe thermal conductivity rapidly, which shows that only porosity cannot completely determine effective thermal conductivity ofclosed-cell aluminum foam. 展开更多
关键词 closed-cell aluminum foam thermal conductivity POROSITY pore distribution temperature distribution
下载PDF
Mechanical Characterization of Close Cell Aluminum Foams Reinforced by High Voltages Electro-deposition 被引量:1
17
作者 XU Yiku YANG Lei +5 位作者 SONG Xuding CHEN Yongnan PENG Xuan CHEN Yunzhou HAO Jianmin LIU Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期541-548,共8页
The parameters for the electro-deposition of Cu were optimized in order to increase the compressive properties of close cell aluminum. Different values of deposition voltages and times were considered to vary the amou... The parameters for the electro-deposition of Cu were optimized in order to increase the compressive properties of close cell aluminum. Different values of deposition voltages and times were considered to vary the amount of deposited Cu. The surface morphology of the coating was observed by SEM and the compressive properties were evaluated by MTS. The results show that the coating is more homogeneous and compact with increasing voltage in a certain range, and beyond which, the coating quality decreases apparently. The reason is dedicated to the discharge rate of Cu2+ and nucleus formed in unit time. The compression results show three experienced stages: elastic deformation stage, collapse deformation stage and densification stage. After the electro-deposition of Cu, the elasticity modulus is increased obviously and the platform stress is also increased. Under the same strain, the stress of the aluminum foam with coating is reinforced comparing with the aluminum foam without coating. Furthermore, the platform area is widened apparently. In addition, Cu-SiC nanocomposite coatings are electrodeposited in alumium foams for further improving the mechanical characterization. 展开更多
关键词 aluminum foam ELECTRO-DEPOSITION MECHANICAL characterization
下载PDF
Effect of Porosity and Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams 被引量:1
18
作者 YiFENG ShishengHU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期395-397,共3页
The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The e... The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimental results showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic, plateau and densification. The dynamic compressive strength of foams is affected not only by the relative density but also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size are more sensitive to the strain rate than foams with lower relative density or larger cell size. 展开更多
关键词 aluminum alloy POROSITY Dynamic compressive property foam
下载PDF
Compressive properties of aluminum foams by gas injection method 被引量:1
19
作者 Zhang Huiming Chen Xiang +1 位作者 Fan Xueliu Li Yanxiang 《China Foundry》 SCIE CAS 2012年第3期215-220,共6页
The compressive properties of aluminum foams by gas injection method are investigated under both quasi-static and dynamic compressive loads in this paper. The experimental results indicate that the deformation of the ... The compressive properties of aluminum foams by gas injection method are investigated under both quasi-static and dynamic compressive loads in this paper. The experimental results indicate that the deformation of the aluminum foams goes through three stages: elastic deforming, plastic deforming and densification stage, during both the quasi-static and dynamic compressions. The aluminum foams with small average cell size or low porosity have high yield strength. An increase in strain rate can lead to an increase of yield strength. The yield strength of the aluminum foams under the dynamic loading condition is much greater than that under the quasi-static loading condition. Dynamic compressive tests show that a higher strain rate can give rise to a higher energy absorption capacity, which demonstrates that the aluminum foams have remarkable strain rate sensitivity on the loading rate. 展开更多
关键词 aluminum foam strain rate POROSITY energy absorption
下载PDF
Effects of microstructure on uniaxial strength asymmetry of open-cell foams 被引量:1
20
作者 Zi-xing LU Ji-xiang HUANG Ze-shuai YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第1期37-46,共10页
Based on the elongated Kelvin model, the effect of microstructure on the uniaxial strength asymmetry of open-cell foams is investigated. The results indicate that this asymmetry depends on the relative density, the so... Based on the elongated Kelvin model, the effect of microstructure on the uniaxial strength asymmetry of open-cell foams is investigated. The results indicate that this asymmetry depends on the relative density, the solid material, the cell morphology, and the strut geometry of open-cell foams. Even though the solid material has the same tensile and compressive strength, the tensile and compressive strength of open-cell foams with asymmetrical sectional struts are still different. In addition, with the increasing degree of anisotropy, the uniaxial strength as well as the strength asymmetry increases in the rise direction but reduces in the transverse direction. Moreover, the plastic collapse ratio between two directions is verified to depend mainly on the cell morphology. The predicted results are compared with Gibson and Ashby's theoretical results as well as the experimental data reported in the literature, which validates that the elongated Kelvin model is accurate in explaining the strength asymmetry presented in realistic open-cell foams. 展开更多
关键词 open-cell foam MICROSTRUCTURE STRENGTH Kelvin model
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部