Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied fo...Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied for the generation mechanism, propagation features and influencing factors, the curved channel will complicate the characteristics of tidal bore propagation, which need further investigation compared with straight channel. In this study, the flume experiments for both undular and breaking bores’ propagation in curved channel are performed to measure the freesurface elevation and flow velocity by ultrasonic sensors and ADV respectively. The propagation characteristics,including tidal bore height, cross-section surface gradient, tidal bore propagation celerity, and flow velocity are obtained for both sides of the curved channel. And three bore intensities are set for each type of tidal bores. The freesurface gradients are consistently enlarged in high-curvature section for undular and breaking bores, but have distinct behaviors in low-curvature section. The spatial distributions of tidal bore propagation celerity and flow velocity are compared between concave and convex banks. This work will provide experimental reference for engineering design of beach and seawall protection, erosion reduction and siltation promotion in estuary areas with the existence of tidal bores.展开更多
River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been ...River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2022YFE0104500)the National Natural Science Foundation of China (Grant No. 52271271)+2 种基金the National Natural Science Foundation of China (Grant No. 41906183)the National Natural Science Foundation of China (Grant No.52101308)the Fundamental Research Funds for the Central Universities (Grant No.B220202080)。
文摘Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied for the generation mechanism, propagation features and influencing factors, the curved channel will complicate the characteristics of tidal bore propagation, which need further investigation compared with straight channel. In this study, the flume experiments for both undular and breaking bores’ propagation in curved channel are performed to measure the freesurface elevation and flow velocity by ultrasonic sensors and ADV respectively. The propagation characteristics,including tidal bore height, cross-section surface gradient, tidal bore propagation celerity, and flow velocity are obtained for both sides of the curved channel. And three bore intensities are set for each type of tidal bores. The freesurface gradients are consistently enlarged in high-curvature section for undular and breaking bores, but have distinct behaviors in low-curvature section. The spatial distributions of tidal bore propagation celerity and flow velocity are compared between concave and convex banks. This work will provide experimental reference for engineering design of beach and seawall protection, erosion reduction and siltation promotion in estuary areas with the existence of tidal bores.
基金supported in part by the Special Fund for Basic Scientific Research Business Expenses of Central Public Welfare Scientific Research Institutes under Grant TKS20210103the Open Fund of Key Laboratory of Ocean Observation Technology,Ministry of Natural Resources of China(2021klootA06).
文摘River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation.