Geological radar probing technology finds wide application in engineering projects. The high-precision characteristics of geologic radar should be studied in connection with fine processing and interpretation. This ar...Geological radar probing technology finds wide application in engineering projects. The high-precision characteristics of geologic radar should be studied in connection with fine processing and interpretation. This article discusses such issues as (1) geologic radar noise source and (2) fine processing and interpretation of radar data. It is focused on how to achieve fine processing and interpretation.展开更多
Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform samp...Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.展开更多
Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the ...Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.展开更多
The geological prospecting radar, a high-techuology rapidly developed in recent years, is used in the field of nondestructive testing and object detecting, in accordance with the reflection principle of high-frequency...The geological prospecting radar, a high-techuology rapidly developed in recent years, is used in the field of nondestructive testing and object detecting, in accordance with the reflection principle of high-frequency electromagnetic wave. It will be effective if there exists a large difference in the electromagnetic properties between an object body and its surroundings. The result of using the geological prospecting radar in detecting the concrete blocks with ber in the capital internatioual airport’s east runway is aualyed in detail herein. The introduction of the geological prospecting radar provides a new approach to nondotodive testing.展开更多
The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective...The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.展开更多
基金This project is sponsored by The Special Fund of Scientific Instruments of National Natural Science Foundation of China(50127402) and The Geophysical Responses to The High-resolution Exploration for Coal-methane of 973 Program(2002CB211707).
文摘Geological radar probing technology finds wide application in engineering projects. The high-precision characteristics of geologic radar should be studied in connection with fine processing and interpretation. This article discusses such issues as (1) geologic radar noise source and (2) fine processing and interpretation of radar data. It is focused on how to achieve fine processing and interpretation.
基金Projects 07KJZ11 supported by the President Fund of Xuzhou Medical School07KJB310117 by the Education Department of Jiangsu Province
文摘Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.
基金partially supported by JSPS KAKENHI(Grant No.16H03153)the Limestone Association of Japan。
文摘Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.
文摘The geological prospecting radar, a high-techuology rapidly developed in recent years, is used in the field of nondestructive testing and object detecting, in accordance with the reflection principle of high-frequency electromagnetic wave. It will be effective if there exists a large difference in the electromagnetic properties between an object body and its surroundings. The result of using the geological prospecting radar in detecting the concrete blocks with ber in the capital internatioual airport’s east runway is aualyed in detail herein. The introduction of the geological prospecting radar provides a new approach to nondotodive testing.
基金Supported by National Natural Science Foundation of China (50625927,50727904)the National Basic Research Program (973) of China (2007CB209407)Ministry of Communications’Scientific and Technological Program of Transportation Development in Western China(2009318000008)
文摘The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.