Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj...Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.展开更多
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
This paper presents the results of a unique study conducted by the National Institute for Occupational Safety and Health(NIOSH)from 2016 to 2019 to evaluate the effects of longwall-induced subsurface deformations on s...This paper presents the results of a unique study conducted by the National Institute for Occupational Safety and Health(NIOSH)from 2016 to 2019 to evaluate the effects of longwall-induced subsurface deformations on shale gas well casing integrity and underground miner safety and health.At both deep-cover and shallow-cover instrumentation sites,surface subsidence measurements,subsurface inplace inclinometer measurements,and underground pillar pressure measurements were conducted as longwall panels were mined.Comparisons of the deep-cover and shallow-cover test site results with those from a similar study under medium cover reveal an interesting longwall-induced response scenario.Under shallow and medium covers,measured horizontal displacements within the abutment pillar are one order of magnitude higher than those measured under deep cover.On the other hand,measured vertical compressions under deep cover are one order of magnitude higher than those under shallow and medium covers.However,FLAC3 Dsimulations of the casings indicate that,in all three cases,the P-110 production casings remain intact under longwall-induced deformations and compressions,which has serious implications for future mine design in areas where shale gas wells have been drilled ahead of mining.展开更多
In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production...In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production,the separate transportation mode of underpass bridge and overpass steel trestle is proposed to optimize the open pit development transportation system,so as to solve the practical problems that the horizontal cross of transport vehicles causes vehicle blockage,affects production schedule and production safety.The results show that the horizontal crossing road can be changed into a separate type of overpass steel trestle,which can realize the classified transportation of large and small vehicles,reduce the traffic density,make vehicles with different functions go their own way,eliminate the hidden danger of traffic accidents,and improve the production efficiency.展开更多
The aviation industry is a sector that is developing, changing and growing every day in terms of technological and legal framework. There are generally three factors that enable airlines to hold on to the market. Thes...The aviation industry is a sector that is developing, changing and growing every day in terms of technological and legal framework. There are generally three factors that enable airlines to hold on to the market. These factors are safety, service quality and price. Airline companies can analyze the customers in the market with a focus on price and quality and develop a business model according to their expectations. For example, business class and economy class passenger expectations are different from each other, so the service and price to be offered to them will be different. However, all customers have one common expectation and that is safety. No matter how high quality the service is or how cheap the price is, no one wants to fly with an airline or plane that is not safe. From an airline company’s point of view, an accident or breakdown of one of the company’s aircraft can cause irreparable image loss and financial damage. If we look at past examples, we see that there are many airline companies or maintenance organizations that could not recover after an accident and went bankrupt. Safety is an indispensable factor. Therefore, there is a unit in the sector called the safety management system (SMS), which collects data by taking a proactive and reactive approach. The way and purpose of the safety management system is to take a proactive approach to recognize and prevent unsafe situations before they cause accidents or breakdowns, or to take a reactive approach to find the causes of accidents and breakdowns that have occurred as a result of certain factors and to take the necessary measures to prevent the same situations from happening again in the sector. The field of data mining, which is necessary to predict the future behavior of customers in the field of marketing, is an area that marketing also values. In this study, data mining studies to ensure safety in the aviation industry and the security of customer information in marketing will be emphasized, firstly, the concept and importance of data mining will be mentioned.展开更多
Xinli district of Sanshandao Gold Mine is the first subsea metal mine in China.To achieve 6 kt/d production capacity under the premise of safe mining,high-intensity mining might destroy the in-situ stress filed and th...Xinli district of Sanshandao Gold Mine is the first subsea metal mine in China.To achieve 6 kt/d production capacity under the premise of safe mining,high-intensity mining might destroy the in-situ stress filed and the stability of rockmass.According to sampling and testing of ore-rock and backfill and in-situ stress field measurement,safety factor method calculation model based on stress-strain strength reduction at arbitrary points and Mohr-Coulomb yield criterion was established and limit displacement subsidence values under the safety factor of different limit stoping steps were calculated.The results from three years in-situ mining and strata movement monitoring using multi-point displacements meter showed that the lower settlement frame stope hierarchical level filling mining method,mining sequence are reasonable and rockmass stability evaluation using safety factor method,in-situ real-time monitoring can provide the technical foundation for the safety of seabed mining.展开更多
The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived...The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived rock mass. The different types of failure modes of the talus-derived rock mass were introduced and a possible failure mechanism relation between the failure zone and the structure of the talus-derived rock mass was also shown. The physical model test results indicate that the rainfall has significant influence on the stability and failure modes of talus-derived rock mass during open-pit mining. The development of the seepage area caused by rainfall initiates the localized failure in that particular area, and the initiation of localized instability is mainly induced by stress changes concentrated in the seepage area.展开更多
Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining tech...Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.展开更多
Comprehensive evaluation and warning is very important and difficult in food safety. This paper mainly focuses on introducing the application of using big data mining in food safety warning field. At first,we introduc...Comprehensive evaluation and warning is very important and difficult in food safety. This paper mainly focuses on introducing the application of using big data mining in food safety warning field. At first,we introduce the concept of big data miming and three big data methods. At the same time,we discuss the application of the three big data miming methods in food safety areas. Then we compare these big data miming methods,and propose how to apply Back Propagation Neural Network in food safety risk warning.展开更多
The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static l...The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static loads of the overlying strata is not clear,which restricts the safe and efcient application of highwall mining.In this study,the load-bearing model of the rib pillar in highwall mining was established,the cusp catastrophe theory and the safety coefcient of the rib pillar were considered,and the criterion equations of the rib pillar stability were proposed.Based on the limit equilibrium theory,the limit stress of the rib pillar was analyzed,and the calculation equations of plastic zone width of the rib pillar in highwall mining were obtained.Based on the Winkler foundation beam theory,the elastic foundation beam model composed of the rib pillar and roof under the highwall mining was established,and the calculation equations for the compression of the rib pillar under dynamic and static loads were developed.The results showed that with the increase of the rib pillar width,the total compression of the rib pillar under dynamic and static loads decreases nonlinearly,and the compression of the rib pillar caused by static loads of the overlying strata and trucks has a decisive role.Numerical simulation and theoretical calculation were also performed in this study.In the numerical simulation,the coal seam with a buried depth of 122 m and a thickness of 3 m is mined by highwall mining techniques.According to the established rib pillar instability model of the highwall mining system,it is found that when the mining opening width is 3 m,the reasonable width of the rib pillar is at least 1.3 m,and the safety factor of the rib pillar is 1.3.The numerical simulation results are in good agreement with the results of theoretical calculation,which verifes the feasibility of the theoretical analysis of the rib pillar stability.This research provides a reference for the stability analysis of rib pillars under highwall mining.展开更多
To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the corresponding ventilation methods were developed. This includes a set of min...To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the corresponding ventilation methods were developed. This includes a set of mining procedures and principles which help insure safe and efficient production. Furthermore, green mining, meaning the comprehensive use of emitted gas, proper treatment of the environment and appropriate mine temperature control, is now standard. The concepts of modem mining and the principles of pressure relief are described. Coal-gas simultaneous ex- traction and multi-pressure relief techniques were developed which require a combination of surface and underground gas extraction. The application of Y-ventilation systems, of roadways retained along goafs, of stress control techniques for highly fragile mine roofs and of powerful, automatic and reliable mining equipment contributes to safe operation of modem deep mines. Operating parameters for these techniques are described and the results of their use discussed.展开更多
In Kaiyang Phosphorus Mine, serious environmental and safety problems are caused by large scale mining activities in the past 40 years. These problems include mining subsidence, low recovery ratio, too much dead ore i...In Kaiyang Phosphorus Mine, serious environmental and safety problems are caused by large scale mining activities in the past 40 years. These problems include mining subsidence, low recovery ratio, too much dead ore in pillars, and pollution of phosphorus gypsum. Mining subsidence falls into four categories: curved ground and mesa, ground cracks and collapse hole, spalling and eboulement, slope slide and creeping. Measures to treat the mining subsidence were put forward: finding out and managing abandoned stopes, optimizing mining method (cut and fill mining method), selecting proper backfilling materials (phosphogypsum mixtures), avoiding disorder mining operation, and treating highway slopes. These investigations and engineering treatment methods are believed to be able to contribute to the safety extraction of ore and sustainable development in Kaiyang Phosphorus Mine.展开更多
In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of...In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production.展开更多
In recent years improper allocation of safety input has prevailed in coal mines in China, which resulted in the frequent accidents in coal mining operation. A comprehensive assessment of the input efficiency of coal m...In recent years improper allocation of safety input has prevailed in coal mines in China, which resulted in the frequent accidents in coal mining operation. A comprehensive assessment of the input efficiency of coal mine safety should lead to improved efficiency in the use of funds and management resources. This helps government and enterprise managers better understand how safety inputs are used and to optimize allocation of resources. Study on coal mine's efficiency assessment of safety input was con- ducted in this paper. A C^2R model with non-Archimedean infinitesimal vector based on output is established after consideration of the input characteristics and the model properties. An assessment of an operating mine was done using a specific set of input and output criteria. It is found that the safety input was efficient in 2002 and 2005 and was weakly efficient in 2003. However, the efficiency was relatively low in both 2001 and 2004. The safety input resources can be optimized and adjusted by means of projection theory. Such analysis shows that, on average in 2001 and 2004, 45% of the expended funds could have been saved. Likewise, 10% of the safety management and technical staff could have been eliminated and working hours devoted to safety could have been reduced by 12%. These conditions could have Riven the same results.展开更多
In order to achieve the safe mining in Sanshandao Gold Mine,five schemes of secure pillar group are designed.Using the method of the renormalization group,the failure mechanism of the pillar group is explored,and the ...In order to achieve the safe mining in Sanshandao Gold Mine,five schemes of secure pillar group are designed.Using the method of the renormalization group,the failure mechanism of the pillar group is explored,and the safety factor of the pillar system is also obtained.The displacement characteristics,stress-strain laws,distribution of plastic zone and damage range of different pillar group are analyzed using numerical calculation software FLAC3D.To determine a reasonable pillar group scheme,the pillar stability and roof deformation are utilized to evaluate the safety of the pillar group.In addition,the theory of fuzzy comprehensive evaluation is adopted to verify the optimal scheme.The pillar group with the lowest roof deformation value is chosen as the optimal plan,which renders a factor of safety of 2.06 for the pillar group.According to this scheme,pillars with the width of 10 m are set along the strike of undersea deposit with the interval of 50 m.Rib pillars of 15 m in width are set at the location of the exploration line of 127,151 and 167.The analysis can be used to provide guidance for optimal design of pillar structures in undersea mining.展开更多
Mining under wide span is of concern as it increases the probability of back caving causing personnel injury and equipment damage in underground mines in open stoping and underhand drift-and-fill methods.Though restri...Mining under wide span is of concern as it increases the probability of back caving causing personnel injury and equipment damage in underground mines in open stoping and underhand drift-and-fill methods.Though restricting personnel access to well supported lateral development is commonly practiced,it is not always possible to implement this requirement due to various factors such as ore loss control,drilling equipment limitations,availability of remote operating capacity and consideration of productivity.Even with rules implemented to limit personnel entry into openings with wide spans,the hazards of equipment damage and back caving still exist.Over the years,different practices have been reported and adopted to minimize risks associated with exposure to large spans in various underground mines.Lessons from these practices are beneficial to current and future mines with challenges of safe extraction of thick deposits in a non-caving setting.This paper briefly summarizes practices in mining wide orebodies using the open stoping method without personnel access and underhand mining using the drift-andfill method with personnel exposure in the industry and presents cases from Kinross mines where the hanging pillar design was tested,and stope backs were naturally and artificially supported for extraction under wide spans using the open stoping method.展开更多
The design and practice in supporting the cut slope of an open-pit mine wereintroduced, in which the high pressure grouting method was used in reinforcing the weak formation inthe slopes. Based on a detailed geologica...The design and practice in supporting the cut slope of an open-pit mine wereintroduced, in which the high pressure grouting method was used in reinforcing the weak formation inthe slopes. Based on a detailed geological survey of the slope, a theoretical analysis was carriedout, and the design parameters were proposed, where the Tresca or Mohr-Coulomb yield criteria wasemployed. A patent technology, named 'Technology of high pressure and multiple grouting in differentlevels within a single hole', was employed in the construction. Anchor bars were also installed asgrouting proceeds. This method combines anchoring and grouting comprehensively and was foundsuccessful in practice.展开更多
The circle geometric constraint model (CGCM) was put forward for resolving the open-pit mine ore-matching problems (OMOMP). By adopting the approaches of graph theory, block model of blasted piles was abstracted i...The circle geometric constraint model (CGCM) was put forward for resolving the open-pit mine ore-matching problems (OMOMP). By adopting the approaches of graph theory, block model of blasted piles was abstracted into a set of nodes and directed edges, which were connected together with other nodes in the range of circle constraints, to describe the mining sequence. Also, the constructing method of CGCM was introduced in detail. The algorithm of CGCM has been realized in the DIM1NE system, and applied to a short-term (5 d) program calculation for ore-matching of a cement limestone mine in Hebei Province, China. The applications show that CGCM can well describe the mining sequence of ore blocks and its mining geometric constraints in the process of mining blasted piles. This model, which is applicable for resolving OMOMP under complicated geometric constraints with accurate results, provides effective ways to solve the problems of open-pit ore-matching.展开更多
In view of the study on mining transferred from open-pit to underground, the research on the problem of the stabil- ity of slope is less. This article combined the actual situation of the Gaohai Coal Mine in Fuxin Cit...In view of the study on mining transferred from open-pit to underground, the research on the problem of the stabil- ity of slope is less. This article combined the actual situation of the Gaohai Coal Mine in Fuxin City and set up a three-dimensional model of the part of Huizhou open-pit slope by the finite difference software. Through the three-dimensional numerical simulation study of the influence on the stability of slope by underground mining, the basic characteristics of the open-pit slope deformation and the situation of basic stability were discussed. The simulation results of the mining slope of the displacement and deformation analysis of the state for mining provide a reference to the slope stability research.展开更多
Mining safety and health improvements over the past decades are remarkable by many metrics, and yet the expectation of society, and the goal of the mining industry, is zero harm. If we examine the underlying enablers ...Mining safety and health improvements over the past decades are remarkable by many metrics, and yet the expectation of society, and the goal of the mining industry, is zero harm. If we examine the underlying enablers for the significant gains that have been achieved, the key role that research to help understand the causes of problems and to develop lasting solutions is clear. Many of the remaining challenges have been resistant to solutions by various approaches. Some, such as fatalities and injuries from ground control or powered haulage are prominent year after year. Different approaches are indicated and new solutions will be required if we are to achieve a goal of zero harm. These will originate with research, but into which topics, and what are some of these different approaches? This paper examines the current state of mine safety in the United States and highlights areas of significant opportunity for research that will lead to solutions. The likely direction of research that will enable realization of the ‘‘zero harm'' goal is described in terms of evolutionary and revolutionary approaches. Both are important, but the author's view is that some of the largest gains will be made with trans-disciplinary approaches that break from the past. Topical areas of research are suggested and several research questions are given to illustrate the direction of future research in mining safety and health.展开更多
文摘Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
文摘This paper presents the results of a unique study conducted by the National Institute for Occupational Safety and Health(NIOSH)from 2016 to 2019 to evaluate the effects of longwall-induced subsurface deformations on shale gas well casing integrity and underground miner safety and health.At both deep-cover and shallow-cover instrumentation sites,surface subsidence measurements,subsurface inplace inclinometer measurements,and underground pillar pressure measurements were conducted as longwall panels were mined.Comparisons of the deep-cover and shallow-cover test site results with those from a similar study under medium cover reveal an interesting longwall-induced response scenario.Under shallow and medium covers,measured horizontal displacements within the abutment pillar are one order of magnitude higher than those measured under deep cover.On the other hand,measured vertical compressions under deep cover are one order of magnitude higher than those under shallow and medium covers.However,FLAC3 Dsimulations of the casings indicate that,in all three cases,the P-110 production casings remain intact under longwall-induced deformations and compressions,which has serious implications for future mine design in areas where shale gas wells have been drilled ahead of mining.
文摘In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production,the separate transportation mode of underpass bridge and overpass steel trestle is proposed to optimize the open pit development transportation system,so as to solve the practical problems that the horizontal cross of transport vehicles causes vehicle blockage,affects production schedule and production safety.The results show that the horizontal crossing road can be changed into a separate type of overpass steel trestle,which can realize the classified transportation of large and small vehicles,reduce the traffic density,make vehicles with different functions go their own way,eliminate the hidden danger of traffic accidents,and improve the production efficiency.
文摘The aviation industry is a sector that is developing, changing and growing every day in terms of technological and legal framework. There are generally three factors that enable airlines to hold on to the market. These factors are safety, service quality and price. Airline companies can analyze the customers in the market with a focus on price and quality and develop a business model according to their expectations. For example, business class and economy class passenger expectations are different from each other, so the service and price to be offered to them will be different. However, all customers have one common expectation and that is safety. No matter how high quality the service is or how cheap the price is, no one wants to fly with an airline or plane that is not safe. From an airline company’s point of view, an accident or breakdown of one of the company’s aircraft can cause irreparable image loss and financial damage. If we look at past examples, we see that there are many airline companies or maintenance organizations that could not recover after an accident and went bankrupt. Safety is an indispensable factor. Therefore, there is a unit in the sector called the safety management system (SMS), which collects data by taking a proactive and reactive approach. The way and purpose of the safety management system is to take a proactive approach to recognize and prevent unsafe situations before they cause accidents or breakdowns, or to take a reactive approach to find the causes of accidents and breakdowns that have occurred as a result of certain factors and to take the necessary measures to prevent the same situations from happening again in the sector. The field of data mining, which is necessary to predict the future behavior of customers in the field of marketing, is an area that marketing also values. In this study, data mining studies to ensure safety in the aviation industry and the security of customer information in marketing will be emphasized, firstly, the concept and importance of data mining will be mentioned.
基金Project(10872218) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Key Basic Research Program of China+1 种基金Project(20090461022) supported by the National Postdoctoral Foundation of ChinaProject (11MX21) supported by the Students' Innovation Project Aubsidize Award of Arcelor Mittal
文摘Xinli district of Sanshandao Gold Mine is the first subsea metal mine in China.To achieve 6 kt/d production capacity under the premise of safe mining,high-intensity mining might destroy the in-situ stress filed and the stability of rockmass.According to sampling and testing of ore-rock and backfill and in-situ stress field measurement,safety factor method calculation model based on stress-strain strength reduction at arbitrary points and Mohr-Coulomb yield criterion was established and limit displacement subsidence values under the safety factor of different limit stoping steps were calculated.The results from three years in-situ mining and strata movement monitoring using multi-point displacements meter showed that the lower settlement frame stope hierarchical level filling mining method,mining sequence are reasonable and rockmass stability evaluation using safety factor method,in-situ real-time monitoring can provide the technical foundation for the safety of seabed mining.
基金Project (41202220) supported by the National Natural Science Foundation of ChinaProject (2-9-2012-65) supported by the Fundamental Research Funds for the Central Universities, ChinaProject (20120022120003) supported by the Ph.D Program Foundation of Ministry of Education of China
文摘The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived rock mass. The different types of failure modes of the talus-derived rock mass were introduced and a possible failure mechanism relation between the failure zone and the structure of the talus-derived rock mass was also shown. The physical model test results indicate that the rainfall has significant influence on the stability and failure modes of talus-derived rock mass during open-pit mining. The development of the seepage area caused by rainfall initiates the localized failure in that particular area, and the initiation of localized instability is mainly induced by stress changes concentrated in the seepage area.
文摘Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.
基金Supported by Soft Science Research Project of Guizhou Province(R20142023)Key Youth Fund Project of Guizhou Academy of Sciences(J201402)
文摘Comprehensive evaluation and warning is very important and difficult in food safety. This paper mainly focuses on introducing the application of using big data mining in food safety warning field. At first,we introduce the concept of big data miming and three big data methods. At the same time,we discuss the application of the three big data miming methods in food safety areas. Then we compare these big data miming methods,and propose how to apply Back Propagation Neural Network in food safety risk warning.
基金fnancially supported by National Natural Science Foundation of China(Grant No.51974295).
文摘The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static loads of the overlying strata is not clear,which restricts the safe and efcient application of highwall mining.In this study,the load-bearing model of the rib pillar in highwall mining was established,the cusp catastrophe theory and the safety coefcient of the rib pillar were considered,and the criterion equations of the rib pillar stability were proposed.Based on the limit equilibrium theory,the limit stress of the rib pillar was analyzed,and the calculation equations of plastic zone width of the rib pillar in highwall mining were obtained.Based on the Winkler foundation beam theory,the elastic foundation beam model composed of the rib pillar and roof under the highwall mining was established,and the calculation equations for the compression of the rib pillar under dynamic and static loads were developed.The results showed that with the increase of the rib pillar width,the total compression of the rib pillar under dynamic and static loads decreases nonlinearly,and the compression of the rib pillar caused by static loads of the overlying strata and trucks has a decisive role.Numerical simulation and theoretical calculation were also performed in this study.In the numerical simulation,the coal seam with a buried depth of 122 m and a thickness of 3 m is mined by highwall mining techniques.According to the established rib pillar instability model of the highwall mining system,it is found that when the mining opening width is 3 m,the reasonable width of the rib pillar is at least 1.3 m,and the safety factor of the rib pillar is 1.3.The numerical simulation results are in good agreement with the results of theoretical calculation,which verifes the feasibility of the theoretical analysis of the rib pillar stability.This research provides a reference for the stability analysis of rib pillars under highwall mining.
基金Projects 2001BA803B04 and 2004BA803B01 supported by the National Key Projects for Tackling Scientific and Technological Problems during the 10thFive-Year Plan
文摘To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the corresponding ventilation methods were developed. This includes a set of mining procedures and principles which help insure safe and efficient production. Furthermore, green mining, meaning the comprehensive use of emitted gas, proper treatment of the environment and appropriate mine temperature control, is now standard. The concepts of modem mining and the principles of pressure relief are described. Coal-gas simultaneous ex- traction and multi-pressure relief techniques were developed which require a combination of surface and underground gas extraction. The application of Y-ventilation systems, of roadways retained along goafs, of stress control techniques for highly fragile mine roofs and of powerful, automatic and reliable mining equipment contributes to safe operation of modem deep mines. Operating parameters for these techniques are described and the results of their use discussed.
基金Projects(50404010 50574098) supported by the National Natural Science Foundation of ChinaProjects (05JJ10010) supported by the Hunan Provincial Natural Science Foundation of Distinguished Young Scholars
文摘In Kaiyang Phosphorus Mine, serious environmental and safety problems are caused by large scale mining activities in the past 40 years. These problems include mining subsidence, low recovery ratio, too much dead ore in pillars, and pollution of phosphorus gypsum. Mining subsidence falls into four categories: curved ground and mesa, ground cracks and collapse hole, spalling and eboulement, slope slide and creeping. Measures to treat the mining subsidence were put forward: finding out and managing abandoned stopes, optimizing mining method (cut and fill mining method), selecting proper backfilling materials (phosphogypsum mixtures), avoiding disorder mining operation, and treating highway slopes. These investigations and engineering treatment methods are believed to be able to contribute to the safety extraction of ore and sustainable development in Kaiyang Phosphorus Mine.
基金Project(107021) supported by the Key Foundation of Chinese Ministry of Education Project(2009643013) supported by China Scholarship Fund
文摘In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production.
基金Project 70771105 supported by the National Natural Science Foundation of China
文摘In recent years improper allocation of safety input has prevailed in coal mines in China, which resulted in the frequent accidents in coal mining operation. A comprehensive assessment of the input efficiency of coal mine safety should lead to improved efficiency in the use of funds and management resources. This helps government and enterprise managers better understand how safety inputs are used and to optimize allocation of resources. Study on coal mine's efficiency assessment of safety input was con- ducted in this paper. A C^2R model with non-Archimedean infinitesimal vector based on output is established after consideration of the input characteristics and the model properties. An assessment of an operating mine was done using a specific set of input and output criteria. It is found that the safety input was efficient in 2002 and 2005 and was weakly efficient in 2003. However, the efficiency was relatively low in both 2001 and 2004. The safety input resources can be optimized and adjusted by means of projection theory. Such analysis shows that, on average in 2001 and 2004, 45% of the expended funds could have been saved. Likewise, 10% of the safety management and technical staff could have been eliminated and working hours devoted to safety could have been reduced by 12%. These conditions could have Riven the same results.
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProjects(51674288,11402311)supported by the National Natural Science Foundation of China
文摘In order to achieve the safe mining in Sanshandao Gold Mine,five schemes of secure pillar group are designed.Using the method of the renormalization group,the failure mechanism of the pillar group is explored,and the safety factor of the pillar system is also obtained.The displacement characteristics,stress-strain laws,distribution of plastic zone and damage range of different pillar group are analyzed using numerical calculation software FLAC3D.To determine a reasonable pillar group scheme,the pillar stability and roof deformation are utilized to evaluate the safety of the pillar group.In addition,the theory of fuzzy comprehensive evaluation is adopted to verify the optimal scheme.The pillar group with the lowest roof deformation value is chosen as the optimal plan,which renders a factor of safety of 2.06 for the pillar group.According to this scheme,pillars with the width of 10 m are set along the strike of undersea deposit with the interval of 50 m.Rib pillars of 15 m in width are set at the location of the exploration line of 127,151 and 167.The analysis can be used to provide guidance for optimal design of pillar structures in undersea mining.
文摘Mining under wide span is of concern as it increases the probability of back caving causing personnel injury and equipment damage in underground mines in open stoping and underhand drift-and-fill methods.Though restricting personnel access to well supported lateral development is commonly practiced,it is not always possible to implement this requirement due to various factors such as ore loss control,drilling equipment limitations,availability of remote operating capacity and consideration of productivity.Even with rules implemented to limit personnel entry into openings with wide spans,the hazards of equipment damage and back caving still exist.Over the years,different practices have been reported and adopted to minimize risks associated with exposure to large spans in various underground mines.Lessons from these practices are beneficial to current and future mines with challenges of safe extraction of thick deposits in a non-caving setting.This paper briefly summarizes practices in mining wide orebodies using the open stoping method without personnel access and underhand mining using the drift-andfill method with personnel exposure in the industry and presents cases from Kinross mines where the hanging pillar design was tested,and stope backs were naturally and artificially supported for extraction under wide spans using the open stoping method.
文摘The design and practice in supporting the cut slope of an open-pit mine wereintroduced, in which the high pressure grouting method was used in reinforcing the weak formation inthe slopes. Based on a detailed geological survey of the slope, a theoretical analysis was carriedout, and the design parameters were proposed, where the Tresca or Mohr-Coulomb yield criteria wasemployed. A patent technology, named 'Technology of high pressure and multiple grouting in differentlevels within a single hole', was employed in the construction. Anchor bars were also installed asgrouting proceeds. This method combines anchoring and grouting comprehensively and was foundsuccessful in practice.
基金Project(2011AA060407) supported by the National High Technology Research and Development Program of ChinaProject(51074073) supported by the National Natural Science Foundation of China
文摘The circle geometric constraint model (CGCM) was put forward for resolving the open-pit mine ore-matching problems (OMOMP). By adopting the approaches of graph theory, block model of blasted piles was abstracted into a set of nodes and directed edges, which were connected together with other nodes in the range of circle constraints, to describe the mining sequence. Also, the constructing method of CGCM was introduced in detail. The algorithm of CGCM has been realized in the DIM1NE system, and applied to a short-term (5 d) program calculation for ore-matching of a cement limestone mine in Hebei Province, China. The applications show that CGCM can well describe the mining sequence of ore blocks and its mining geometric constraints in the process of mining blasted piles. This model, which is applicable for resolving OMOMP under complicated geometric constraints with accurate results, provides effective ways to solve the problems of open-pit ore-matching.
文摘In view of the study on mining transferred from open-pit to underground, the research on the problem of the stabil- ity of slope is less. This article combined the actual situation of the Gaohai Coal Mine in Fuxin City and set up a three-dimensional model of the part of Huizhou open-pit slope by the finite difference software. Through the three-dimensional numerical simulation study of the influence on the stability of slope by underground mining, the basic characteristics of the open-pit slope deformation and the situation of basic stability were discussed. The simulation results of the mining slope of the displacement and deformation analysis of the state for mining provide a reference to the slope stability research.
文摘Mining safety and health improvements over the past decades are remarkable by many metrics, and yet the expectation of society, and the goal of the mining industry, is zero harm. If we examine the underlying enablers for the significant gains that have been achieved, the key role that research to help understand the causes of problems and to develop lasting solutions is clear. Many of the remaining challenges have been resistant to solutions by various approaches. Some, such as fatalities and injuries from ground control or powered haulage are prominent year after year. Different approaches are indicated and new solutions will be required if we are to achieve a goal of zero harm. These will originate with research, but into which topics, and what are some of these different approaches? This paper examines the current state of mine safety in the United States and highlights areas of significant opportunity for research that will lead to solutions. The likely direction of research that will enable realization of the ‘‘zero harm'' goal is described in terms of evolutionary and revolutionary approaches. Both are important, but the author's view is that some of the largest gains will be made with trans-disciplinary approaches that break from the past. Topical areas of research are suggested and several research questions are given to illustrate the direction of future research in mining safety and health.