NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O...NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O)/n(SiO_(2)))on the relative crystallinity,textural properties and crystallization kinetics were investigated.The results show that alkalinity exerts a nonmonotonic influence on the relative crystallinity and textural properties,which exhibit a maximum at the alkalinity of 0.43.The nucleation kinetics are studied by fitting the experimental data of relative crystallinity with the Gualtieri model.It is shown that the nucleation rate constant increases with increasing alkalinity,while the duration period of nucleation decreases with increasing alkalinity.For n(Na_(2)O)/n(SiO_(2))ratios ranging from 0.38 to 0.55,the as-synthesized NaY zeolites exhibit narrower crystal size distributions with the increase in alkalinity.The growth rates determined from the variations of average crystal size with time are 51.09,157.50,46.17 and 24.75 nm·h^(-1),respectively.It is found that the larger average crystal sizes at the alkalinity of 0.38 and 0.43 are attributed to the dominant role of crystal growth over nucleation.Furthermore,the combined action of prominent crystal growth and the longer duration periods of nucleation at the alkalinity of 0.38 and 0.43 results in broader crystal size distributions.The findings demonstrate that control of the properties of NaY zeolite and the crystallization kinetics can be achieved by conducting the crystallization process in an appropriate range of alkalinity of the reaction mixture.展开更多
Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the prob...Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the problem of resource utilization of solid waste from agar production.Our previous study confirmed that recovered perlite from agar extraction residue had better pore size and specific surface area than commercial perlite.However,the adsorption efficiency and adsorption mechanism of recovered perlite were the main factors limiting its adsorption application.The adsorption process of Ni^(2+)and Cd^(2+)by recovered perlite in aqueous solution was described by the pseudo-second-order kinetic equation,and the relevant adsorption mechanism was mainly chemisorption.Compared with commercial perlite,the adsorption removal rate of Ni^(2+)and Cd^(2+)by enzymatic recovered perlite could reach 92.9%and 89.2%,respectively,and were improved by 12.63%and 13.03%.Langmuir isothermal adsorption model could better describe the isothermal adsorption process of recovered perlite on heavy metal Ni^(2+)and Cd^(2+),and the relevant adsorption mechanism was mainly monolayer adsorption.The X-ray photoelectron spectroscopy(XPS)results indicated that the decrease of Si—O Si^(2+)hydroxyl coordination bond and the increase of C—Si bond might make the binding effect of recovered perlite with heavy metals stronger.The competitive adsorption of Ni^(2+)and Cd^(2+)by recovered perlite was still dominated by chemisorption and monolayer adsorption.This study was expected to provide a theoretical basis and technical support for the removal of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite from seaweed residue.展开更多
Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CP...Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.展开更多
Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FT...Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FTIR and TG-DTG. The results show that HPMC can significantly delay the hydration induction period and acceleration period of cement pastes. As mixing amount increased, hydration induction period of cement pastes enlarged and accelerated period gradually went back. At the same time, the amount of hydration heat gradually decreased. Expanded perlite had worse delay effects and less change of hydration heat amount of cement pastes than HPMC. HPMC changed the structure of C-S-H during cement hydration. The more amount of HPMC, the more obvious effect. However, EXP had little influence on the structure of C-S-H. At the same age, the content of Ca (OH)2 in cement pastes gradually decreased as the mixing amount increase of HPMC and expanded perlite, and had better delay effect than that single-doped with HPMC or expanded perlite when HPMC and expanded nerlite were both dooed in cement pastes.展开更多
A binary eutectic mixture composed of tetradecanol(TD)and myristic acid(MA)was maximally absorbed into the microstructures of expanded perlite(EP)and expanded vermiculite(EVMT),respectively,through a self-made vacuum ...A binary eutectic mixture composed of tetradecanol(TD)and myristic acid(MA)was maximally absorbed into the microstructures of expanded perlite(EP)and expanded vermiculite(EVMT),respectively,through a self-made vacuum adsorption roller to prepare phase change material(PCM)particle(PCP).Then EP and EVMT-based composite PCM plates were respectively fabricated through a mold pressing method.The thermal property,chemical stability,microstructure and durability were characterized by differential scanning calorimeter(DSC),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM)and thermal cycling tests,respectively.The results show that both PCPs have high latent heats with 110 J/g for EP-based PCP and more than 130 J/g for EVMT-based PCP,compact microstructure without PCM leakage,stable chemical property and good durability.The research results have proved the feasibility for the vacuum adsorption roller used in the composite PCM fabrication.Results of thermal storage performance experiment indicate that the fabricated PCM plates have better thermal inertia than common building materials,and the thermal storage performance of PCM plates has nonlinearly changed with outside air velocity and temperature increase.Therefore,PCM plates show a significant potential for the practical application of building thermal storage.展开更多
Design of efficient catalysts for electrochemical reduction of carbon dioxide (CO_(2)) with high selectivity and activity is of great challenge, but significant for managing the global carbon balance. Herein, a series...Design of efficient catalysts for electrochemical reduction of carbon dioxide (CO_(2)) with high selectivity and activity is of great challenge, but significant for managing the global carbon balance. Herein, a series of three-dimensional (3D) single-atom metals anchored on graphene networks (3D SAM-G) with open-pore structure were successfully mass-produced via a facile in-situ calcination technique assisted by NaCl template. As-obtained 3D SANi-G electrode delivers excellent CO Faradaic efficiency (FE) of >96% in the potential range of −0.6 to −0.9 V versus reversible hydrogen electrode (RHE) and a high current density of 66.27 mA cm^(−2) at −1.0 V versus RHE, outperforming most of the previously reported catalysts tested in H-type cells. Simulations indicate that enhanced mass transport within the 3D open-pore structure effectively increases the catalytically active sites, which in turn leads to simultaneous enhancement on selectivity and activity of 3D SANi-G toward CO_(2) electroreduction. The cost-effective synthesis approach together with the microstructure design concept inspires new insights for the development of efficient electrocatalysts.展开更多
Modification of perlite using nano-magnetic iron oxide was implemented to produce nano-magneticFe3O4-coated perlite composite(Fe3O4/Perlite).The prepared composite was characterized using Scanning Electron Microscopy,...Modification of perlite using nano-magnetic iron oxide was implemented to produce nano-magneticFe3O4-coated perlite composite(Fe3O4/Perlite).The prepared composite was characterized using Scanning Electron Microscopy,Fourier-Transform Infrared spectroscopy and Powder X-ray Fluorescence.The potentiality of both perlite and Fe3O4/Perlite composite to eliminate Cr(VI)from the environmentally relevant water was investigated.The influence of main factors which could affect the adsorption was studied including;pH of medium,shaking time and Cr(VI)ions concentration.The experimental outcome demonstrated that the modification of perlite by nano-magnetic Fe3O4 showed a significantly enhanced Cr(VI)removal efficiency relative to that of unmodified perlite.From the kinetic studies,the experimental data fitted well with the pseudo-second-order model.Moreover,it proposes that Langmuir isotherm is more adequate than the Freundlich isotherm for both perlite and modified perlite.The results recommended that Fe3O4/Perlite composite had a great potential as an economic and efficient adsorbent of Cr(VI)from contaminated water,which has huge application potential.展开更多
We have observed the components, structure and properties of perlite ore. Through a series of ex- periments, it has been proved that the perlite has higher pozzolanic activity and maybe used as addi- tion of cement in...We have observed the components, structure and properties of perlite ore. Through a series of ex- periments, it has been proved that the perlite has higher pozzolanic activity and maybe used as addi- tion of cement in manufacturing pozzolanic cement. The paper also proposes the way to increase the early strength of this kind of cement and utilize it to make many kinds of silicate concrete products.展开更多
According to the filtration mechanism and filtration formula, it is considered that the surface area, bulk density and grain size distri- bution of filter-aid are the main factors affecting the filtration rate. On the...According to the filtration mechanism and filtration formula, it is considered that the surface area, bulk density and grain size distri- bution of filter-aid are the main factors affecting the filtration rate. On the basis of analysing phy- sical and chemical properties of diatomite and per- lite, the scientific bases for preparation of filter aid are discussed. It is possible that the complex filter aid, which is made up of low grade diatomite and perlite, is favourable to build-up a fine 'steely-bridged structure' for the filter cake, and its filtration performance of beer could be improved as good as that of commercial filter-aid made from high grade diatomite. The above points have been demonstrated by the results of laboratorial and industrial experiments of beer filtration.展开更多
The structure modification and its mechanism have been studied when perlite products changed from water-affinity state to anti-water state. The structure of fused perlite and its surface physicochemical properties hav...The structure modification and its mechanism have been studied when perlite products changed from water-affinity state to anti-water state. The structure of fused perlite and its surface physicochemical properties have also been studied. The modification of perlite products has provided the products with anti-water property, which not only enhanced the quality of thermal insulating function, reduced the lost of heat energy, but also made the products water-proof These modified perlite products are used as ideal thermal insulating layers for the thermodynamic equipment and heat transporting conducts.展开更多
A low cost thermal insulating material can be produced by compounding anactive xonotlite slurry, fired-perlite, HOMO PAN fibers and glass fibers. The maximum servicetemperature of the product is 800 deg C; linear shri...A low cost thermal insulating material can be produced by compounding anactive xonotlite slurry, fired-perlite, HOMO PAN fibers and glass fibers. The maximum servicetemperature of the product is 800 deg C; linear shrinkage after 800 deg C X 16 h firing is 0.9percent; the cold crushing strength is 1.56 MPa; the flexural strength at ambient temperature is0.81 MPa; the thermal conductivity at ambient temperature (25 deg C) is 0.056 and 0.128 W/(m centredot K) at 800 deg C. The production cost of such a composite is only 1/3 of that of the normalxonotlite thermal insulators. It can substitute the normal xonotlite thermal insulators on mostoccasions with a similar cost to that of normal perlite products.展开更多
The oil sorption capacity of composite materials made up of different polymeric fabrics (namely acrylic fabric (AF), polypropylene nonwoven (PP), and silk stocking (SS) as composite out-packing materials) and expanded...The oil sorption capacity of composite materials made up of different polymeric fabrics (namely acrylic fabric (AF), polypropylene nonwoven (PP), and silk stocking (SS) as composite out-packing materials) and expanded perlite (EP) was evaluated for oil removal from the water. The effects of sorbent dosage, desorption time, oil amount in the water, and contact time on composite materials sorption were investigated. The results showed that the optimum quantity of EP was between 0.5 g and 1.0 g for 25 cm2 polymeric fabrics bags. Oil removal efficiency for 6 L/m2 of oil amount in the water was 52%-72%, 44%-63%, and 37%-48% for AF, PP, and SS composite materials, respectively. Oil/water selectivity analysis of different composite materials showed that AF composite material had a very high degree of hydrophobicity and oil sorption capacity of approximately 10.17 g/g. Both oil sorption kinetics and equilibrium studies were carried out, and the equilibrium process of composite materials was described well by the Langmuir isotherm, and the oil sorption kinetics of composite materials showed good correlation coefficients for the pseudo-second order kinetic model. Intra-particle diffusion studies showed that oil sorption mechanism was controlled by the three processes, involving in external liquid membrane diffusion, surface sorption, and intra-particle diffusion.展开更多
Our project concentrates on manufacture of light panels based on available natural materials (expanded perlite, sawdust and refuse of wood, vegetable coal.) mixed with a natural resin not toxic (resin of the pine). Th...Our project concentrates on manufacture of light panels based on available natural materials (expanded perlite, sawdust and refuse of wood, vegetable coal.) mixed with a natural resin not toxic (resin of the pine). The manufacturing process permits to carry out panel’s low thickness and in various colors which give an aesthetic aspect for waste water treatment plants while preventing the emanation of the nauseous odors coming from the anaerobic metabolism of the organic matter present in the liquid effluents. Panels are also a suitable solution against rapid evaporation of stored rain fed water into lakes and dams. The particularities of these panels are especially: Lower density than water’s one, provide big capacity of adsorption for the organic gas matter, composite material acts like filter in which organic gases are photo oxidized with dioxide titanium involved in the composite material and these composite materials are insulators of basins against solar heating and consequently fast evaporation.展开更多
The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release con...The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release control abil-ity is an effective method to realize effective utilization of pesticides and reduce pesticide losses.In this work,fosthiazate-stearic acid/expanded perlite sustained-release particles were successfully prepared by vacuum impregnation using expanded perlite(EP)as carrier,fosthiazate(FOS)as model pesticide and stearic acid(SA)as hydrophobic matrix.The structure and morphology of the samples were studied by BET,FT-IR,TGA,XRD,DSC and SEM.The effects of different mass ratios of FOS to SA on loading capacity and release rate at 24 h were investigated.The sustained release behavior of FOS-SA/EP at different temperatures and pH values was investigated by static dialysis bag method.The results showed that FOS and SA were adsorbed in EP pores by physical interaction.With the mass ratios of FOS to SA decreasing from 7:3 to 3:7,the 24 h release rate of FOS-SA/EP decreased from 18.77%to 8.05%,and the drug loading decreased from 461.32 to 130.99 mg/g.FOS-SA/EP showed obvious temperature response at 25℃,30℃ and 35℃,the cumulative release rate(CRR)of 200 h were 33.38%,41.50%and 51.17%,respectively.When pH=5,the CRR of FOS was higher than that of pH=7,and the CRR of FOS for 200 h were 49.01%and 30.12%,respectively.At different temperatures and pH=5,the release mechanism of FOS-SA/EP belongs to the Fickian diffusion mechanism;When pH=7,the diffusion mechanism is dominant,and the dissolution mechanism is complementary.展开更多
Lightweight aggregates are increasingly used in concrete construction. They reduce concrete selfweight furnishing a structural advantage. In contrast, the mechanical properties and durability of lightweight concrete c...Lightweight aggregates are increasingly used in concrete construction. They reduce concrete selfweight furnishing a structural advantage. In contrast, the mechanical properties and durability of lightweight concrete can become the governing factor on lightweight aggregate replacement ratios. Alkali-Silica Reactison (ASR) and compressive strength of mortar samples with expanded slate, expanded glass or perlite, covering the spectrum of internal porosity and weight of lightweight aggregates, were evaluated. Scanning electron microscopy was utilized to evaluate the contribution of the aggregates’ porosity and chemical composition in inhibiting ASR. Perlite, owing to its highly porous microstructure and lower matter excelled in ASR expansion while chemical composition and denser microstructure of the heavier expanded slate resulted in more signified late ASR expansion and higher compressive strength. An attempt in visual inspection of ASR attack of alkali metal ions on silica-rich expanded glass using an ultra-accelerated exposure to sodium hydroxide solution was made</span></span><span style="font-family:Verdana;">.展开更多
Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica...Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica micropowder,α-Al_(2)O_(3) micropowder,zirconia and zircon micropowder as fines,and Secar 71 cement(calcium aluminate cement)as the binder.The effects of the coal gangue ceramsites addition(0,6%,12%,18%and 24%,by mass)on the properties of the as-prepared lightweight alumina-silica castables were investigated.The results show that:(1)the addition of coal gangue ceramsites can reduce the sintering shrinkage of the specimens and help to improve the strength and thermal shock resistance;(2)the samples with the addition of coal gangue ceramsites can produce pores in the matrix of the sintered samples,which provides enough space for the growth of CA6 complex solid solution and expands the irregular lamellar structure;(3)with the addition of coal gangue ceramsites increasing,the linear shrinkage of the samples heat treated at 1000 or 1200℃firstly reduces and then increases,the bulk density increases and the apparent porosity decreases;the cold compression strength and the thermal shock resistance of the specimens heat treated at 1200℃firstly increase and then decrease.Thus,the optimal addition of coal gangue ceramsites is 18%.展开更多
An ecotypic revetment material consisting of nutrition-expansive perlitic-cement composites is introduced. This planting material can combine vegetation recovery with slope protection. The XRD, SEM and image analysis ...An ecotypic revetment material consisting of nutrition-expansive perlitic-cement composites is introduced. This planting material can combine vegetation recovery with slope protection. The XRD, SEM and image analysis techniques were used to study its composition and microstructure. Its strength was measured by an electro-hydraulic servo-controlled testing machine. The results show the unconfined compressive strength is about 393.6 kPa, and the average elastic modulus is about 47.0 MPa. The quartz, felspar, chlorite and calcite are the main non-clay minerals in the planting material. Its particles are mainly spherical,and the range of the equivalent diameter is 1.83 to 15.96 μm. The results also show the planting material contains a large amount of micro non-capillary and capillary pores, and has a microstructure characteristic of honeycomb and coralline. CSH gel produced by hydration of cement increases the strength and water stability of the particles. The anisotropy and slight orientation of the particles increase the void cross-section area,providing an explanation of the high permeability for the planting material.The better porosity of the planting material is apt tokeep moisture and nutriment, provides oxygen for plant root breathing, and aids to exhaust the carbon dioxide by means of exchanging with atmosphere, hence it can facilitate vegetation.展开更多
基金supports from National Natural Science Foundation of China(21938009,22308358,22208346,22078332)National Key Research and Development Program(2022YFC3902701)+2 种基金Ningxia Natural Science Foundation(2021AAC01002)the External Cooperation Program of BIC,Chinese Academy of Sciences(122111KYSB20190032)CAS Project for Young Scientists in Basic Research(YSBR-038)are gratefully acknowledged.
文摘NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O)/n(SiO_(2)))on the relative crystallinity,textural properties and crystallization kinetics were investigated.The results show that alkalinity exerts a nonmonotonic influence on the relative crystallinity and textural properties,which exhibit a maximum at the alkalinity of 0.43.The nucleation kinetics are studied by fitting the experimental data of relative crystallinity with the Gualtieri model.It is shown that the nucleation rate constant increases with increasing alkalinity,while the duration period of nucleation decreases with increasing alkalinity.For n(Na_(2)O)/n(SiO_(2))ratios ranging from 0.38 to 0.55,the as-synthesized NaY zeolites exhibit narrower crystal size distributions with the increase in alkalinity.The growth rates determined from the variations of average crystal size with time are 51.09,157.50,46.17 and 24.75 nm·h^(-1),respectively.It is found that the larger average crystal sizes at the alkalinity of 0.38 and 0.43 are attributed to the dominant role of crystal growth over nucleation.Furthermore,the combined action of prominent crystal growth and the longer duration periods of nucleation at the alkalinity of 0.38 and 0.43 results in broader crystal size distributions.The findings demonstrate that control of the properties of NaY zeolite and the crystallization kinetics can be achieved by conducting the crystallization process in an appropriate range of alkalinity of the reaction mixture.
基金financially supported by National Natural Science Foundation of China(22038012,32172339,and 22178142)National Key Research and Development Program(2023YF D2100603)。
文摘Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the problem of resource utilization of solid waste from agar production.Our previous study confirmed that recovered perlite from agar extraction residue had better pore size and specific surface area than commercial perlite.However,the adsorption efficiency and adsorption mechanism of recovered perlite were the main factors limiting its adsorption application.The adsorption process of Ni^(2+)and Cd^(2+)by recovered perlite in aqueous solution was described by the pseudo-second-order kinetic equation,and the relevant adsorption mechanism was mainly chemisorption.Compared with commercial perlite,the adsorption removal rate of Ni^(2+)and Cd^(2+)by enzymatic recovered perlite could reach 92.9%and 89.2%,respectively,and were improved by 12.63%and 13.03%.Langmuir isothermal adsorption model could better describe the isothermal adsorption process of recovered perlite on heavy metal Ni^(2+)and Cd^(2+),and the relevant adsorption mechanism was mainly monolayer adsorption.The X-ray photoelectron spectroscopy(XPS)results indicated that the decrease of Si—O Si^(2+)hydroxyl coordination bond and the increase of C—Si bond might make the binding effect of recovered perlite with heavy metals stronger.The competitive adsorption of Ni^(2+)and Cd^(2+)by recovered perlite was still dominated by chemisorption and monolayer adsorption.This study was expected to provide a theoretical basis and technical support for the removal of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite from seaweed residue.
基金Project(51408184)supported by the National Natural Science Foundation of ChinaProject(E2017202136)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BSBE2017-05)supported by the Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology,ChinaProject(QG2018-3)supported by Hebei Provincial Department of Transportation,China
文摘Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.
基金Funded by the National Natural Science Foundation of China(No.50902107)National Science and Technology Supporting Program (No.2011BAJ04B02)the Fundamental Research Funds for the Central Universities (No.2011-YB-03)
文摘Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FTIR and TG-DTG. The results show that HPMC can significantly delay the hydration induction period and acceleration period of cement pastes. As mixing amount increased, hydration induction period of cement pastes enlarged and accelerated period gradually went back. At the same time, the amount of hydration heat gradually decreased. Expanded perlite had worse delay effects and less change of hydration heat amount of cement pastes than HPMC. HPMC changed the structure of C-S-H during cement hydration. The more amount of HPMC, the more obvious effect. However, EXP had little influence on the structure of C-S-H. At the same age, the content of Ca (OH)2 in cement pastes gradually decreased as the mixing amount increase of HPMC and expanded perlite, and had better delay effect than that single-doped with HPMC or expanded perlite when HPMC and expanded nerlite were both dooed in cement pastes.
基金Project(51408184)supported by the National Natural Science Foundation of ChinaProject(E2017202136)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BSBE2017-05)supported by Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology,ChinaProject(QG2018-3)supported by Hebei Provincial Department of Transportation,China
文摘A binary eutectic mixture composed of tetradecanol(TD)and myristic acid(MA)was maximally absorbed into the microstructures of expanded perlite(EP)and expanded vermiculite(EVMT),respectively,through a self-made vacuum adsorption roller to prepare phase change material(PCM)particle(PCP).Then EP and EVMT-based composite PCM plates were respectively fabricated through a mold pressing method.The thermal property,chemical stability,microstructure and durability were characterized by differential scanning calorimeter(DSC),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM)and thermal cycling tests,respectively.The results show that both PCPs have high latent heats with 110 J/g for EP-based PCP and more than 130 J/g for EVMT-based PCP,compact microstructure without PCM leakage,stable chemical property and good durability.The research results have proved the feasibility for the vacuum adsorption roller used in the composite PCM fabrication.Results of thermal storage performance experiment indicate that the fabricated PCM plates have better thermal inertia than common building materials,and the thermal storage performance of PCM plates has nonlinearly changed with outside air velocity and temperature increase.Therefore,PCM plates show a significant potential for the practical application of building thermal storage.
基金The authors acknowledge the support from the National Natural Science Foundation of China(51872012)the Key Technologies Research and Development Program of China(Grant No.2018YFA-900).
文摘Design of efficient catalysts for electrochemical reduction of carbon dioxide (CO_(2)) with high selectivity and activity is of great challenge, but significant for managing the global carbon balance. Herein, a series of three-dimensional (3D) single-atom metals anchored on graphene networks (3D SAM-G) with open-pore structure were successfully mass-produced via a facile in-situ calcination technique assisted by NaCl template. As-obtained 3D SANi-G electrode delivers excellent CO Faradaic efficiency (FE) of >96% in the potential range of −0.6 to −0.9 V versus reversible hydrogen electrode (RHE) and a high current density of 66.27 mA cm^(−2) at −1.0 V versus RHE, outperforming most of the previously reported catalysts tested in H-type cells. Simulations indicate that enhanced mass transport within the 3D open-pore structure effectively increases the catalytically active sites, which in turn leads to simultaneous enhancement on selectivity and activity of 3D SANi-G toward CO_(2) electroreduction. The cost-effective synthesis approach together with the microstructure design concept inspires new insights for the development of efficient electrocatalysts.
文摘Modification of perlite using nano-magnetic iron oxide was implemented to produce nano-magneticFe3O4-coated perlite composite(Fe3O4/Perlite).The prepared composite was characterized using Scanning Electron Microscopy,Fourier-Transform Infrared spectroscopy and Powder X-ray Fluorescence.The potentiality of both perlite and Fe3O4/Perlite composite to eliminate Cr(VI)from the environmentally relevant water was investigated.The influence of main factors which could affect the adsorption was studied including;pH of medium,shaking time and Cr(VI)ions concentration.The experimental outcome demonstrated that the modification of perlite by nano-magnetic Fe3O4 showed a significantly enhanced Cr(VI)removal efficiency relative to that of unmodified perlite.From the kinetic studies,the experimental data fitted well with the pseudo-second-order model.Moreover,it proposes that Langmuir isotherm is more adequate than the Freundlich isotherm for both perlite and modified perlite.The results recommended that Fe3O4/Perlite composite had a great potential as an economic and efficient adsorbent of Cr(VI)from contaminated water,which has huge application potential.
文摘We have observed the components, structure and properties of perlite ore. Through a series of ex- periments, it has been proved that the perlite has higher pozzolanic activity and maybe used as addi- tion of cement in manufacturing pozzolanic cement. The paper also proposes the way to increase the early strength of this kind of cement and utilize it to make many kinds of silicate concrete products.
文摘According to the filtration mechanism and filtration formula, it is considered that the surface area, bulk density and grain size distri- bution of filter-aid are the main factors affecting the filtration rate. On the basis of analysing phy- sical and chemical properties of diatomite and per- lite, the scientific bases for preparation of filter aid are discussed. It is possible that the complex filter aid, which is made up of low grade diatomite and perlite, is favourable to build-up a fine 'steely-bridged structure' for the filter cake, and its filtration performance of beer could be improved as good as that of commercial filter-aid made from high grade diatomite. The above points have been demonstrated by the results of laboratorial and industrial experiments of beer filtration.
文摘The structure modification and its mechanism have been studied when perlite products changed from water-affinity state to anti-water state. The structure of fused perlite and its surface physicochemical properties have also been studied. The modification of perlite products has provided the products with anti-water property, which not only enhanced the quality of thermal insulating function, reduced the lost of heat energy, but also made the products water-proof These modified perlite products are used as ideal thermal insulating layers for the thermodynamic equipment and heat transporting conducts.
基金This work was supported by "Supporting Scheme for Backbone Young Staffs in High Education".]
文摘A low cost thermal insulating material can be produced by compounding anactive xonotlite slurry, fired-perlite, HOMO PAN fibers and glass fibers. The maximum servicetemperature of the product is 800 deg C; linear shrinkage after 800 deg C X 16 h firing is 0.9percent; the cold crushing strength is 1.56 MPa; the flexural strength at ambient temperature is0.81 MPa; the thermal conductivity at ambient temperature (25 deg C) is 0.056 and 0.128 W/(m centredot K) at 800 deg C. The production cost of such a composite is only 1/3 of that of the normalxonotlite thermal insulators. It can substitute the normal xonotlite thermal insulators on mostoccasions with a similar cost to that of normal perlite products.
基金National Important Science & Technology Specific Projects of China ( No. 2009ZX07317-006-02,No. 2009ZX07318-008-007)State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,China ( No. 2013DX06)
文摘The oil sorption capacity of composite materials made up of different polymeric fabrics (namely acrylic fabric (AF), polypropylene nonwoven (PP), and silk stocking (SS) as composite out-packing materials) and expanded perlite (EP) was evaluated for oil removal from the water. The effects of sorbent dosage, desorption time, oil amount in the water, and contact time on composite materials sorption were investigated. The results showed that the optimum quantity of EP was between 0.5 g and 1.0 g for 25 cm2 polymeric fabrics bags. Oil removal efficiency for 6 L/m2 of oil amount in the water was 52%-72%, 44%-63%, and 37%-48% for AF, PP, and SS composite materials, respectively. Oil/water selectivity analysis of different composite materials showed that AF composite material had a very high degree of hydrophobicity and oil sorption capacity of approximately 10.17 g/g. Both oil sorption kinetics and equilibrium studies were carried out, and the equilibrium process of composite materials was described well by the Langmuir isotherm, and the oil sorption kinetics of composite materials showed good correlation coefficients for the pseudo-second order kinetic model. Intra-particle diffusion studies showed that oil sorption mechanism was controlled by the three processes, involving in external liquid membrane diffusion, surface sorption, and intra-particle diffusion.
文摘Our project concentrates on manufacture of light panels based on available natural materials (expanded perlite, sawdust and refuse of wood, vegetable coal.) mixed with a natural resin not toxic (resin of the pine). The manufacturing process permits to carry out panel’s low thickness and in various colors which give an aesthetic aspect for waste water treatment plants while preventing the emanation of the nauseous odors coming from the anaerobic metabolism of the organic matter present in the liquid effluents. Panels are also a suitable solution against rapid evaporation of stored rain fed water into lakes and dams. The particularities of these panels are especially: Lower density than water’s one, provide big capacity of adsorption for the organic gas matter, composite material acts like filter in which organic gases are photo oxidized with dioxide titanium involved in the composite material and these composite materials are insulators of basins against solar heating and consequently fast evaporation.
基金supported by the Guangdong Provincial Science and Technology Project(No.2015B020215012)State Key Laboratory of Woody Oil Resource Utilization,Co-Built by Provincial and Ministry of China(No.GZKF202108)National Natural Science Foundation of China(32101475).
文摘The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release control abil-ity is an effective method to realize effective utilization of pesticides and reduce pesticide losses.In this work,fosthiazate-stearic acid/expanded perlite sustained-release particles were successfully prepared by vacuum impregnation using expanded perlite(EP)as carrier,fosthiazate(FOS)as model pesticide and stearic acid(SA)as hydrophobic matrix.The structure and morphology of the samples were studied by BET,FT-IR,TGA,XRD,DSC and SEM.The effects of different mass ratios of FOS to SA on loading capacity and release rate at 24 h were investigated.The sustained release behavior of FOS-SA/EP at different temperatures and pH values was investigated by static dialysis bag method.The results showed that FOS and SA were adsorbed in EP pores by physical interaction.With the mass ratios of FOS to SA decreasing from 7:3 to 3:7,the 24 h release rate of FOS-SA/EP decreased from 18.77%to 8.05%,and the drug loading decreased from 461.32 to 130.99 mg/g.FOS-SA/EP showed obvious temperature response at 25℃,30℃ and 35℃,the cumulative release rate(CRR)of 200 h were 33.38%,41.50%and 51.17%,respectively.When pH=5,the CRR of FOS was higher than that of pH=7,and the CRR of FOS for 200 h were 49.01%and 30.12%,respectively.At different temperatures and pH=5,the release mechanism of FOS-SA/EP belongs to the Fickian diffusion mechanism;When pH=7,the diffusion mechanism is dominant,and the dissolution mechanism is complementary.
文摘Lightweight aggregates are increasingly used in concrete construction. They reduce concrete selfweight furnishing a structural advantage. In contrast, the mechanical properties and durability of lightweight concrete can become the governing factor on lightweight aggregate replacement ratios. Alkali-Silica Reactison (ASR) and compressive strength of mortar samples with expanded slate, expanded glass or perlite, covering the spectrum of internal porosity and weight of lightweight aggregates, were evaluated. Scanning electron microscopy was utilized to evaluate the contribution of the aggregates’ porosity and chemical composition in inhibiting ASR. Perlite, owing to its highly porous microstructure and lower matter excelled in ASR expansion while chemical composition and denser microstructure of the heavier expanded slate resulted in more signified late ASR expansion and higher compressive strength. An attempt in visual inspection of ASR attack of alkali metal ions on silica-rich expanded glass using an ultra-accelerated exposure to sodium hydroxide solution was made</span></span><span style="font-family:Verdana;">.
文摘Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica micropowder,α-Al_(2)O_(3) micropowder,zirconia and zircon micropowder as fines,and Secar 71 cement(calcium aluminate cement)as the binder.The effects of the coal gangue ceramsites addition(0,6%,12%,18%and 24%,by mass)on the properties of the as-prepared lightweight alumina-silica castables were investigated.The results show that:(1)the addition of coal gangue ceramsites can reduce the sintering shrinkage of the specimens and help to improve the strength and thermal shock resistance;(2)the samples with the addition of coal gangue ceramsites can produce pores in the matrix of the sintered samples,which provides enough space for the growth of CA6 complex solid solution and expands the irregular lamellar structure;(3)with the addition of coal gangue ceramsites increasing,the linear shrinkage of the samples heat treated at 1000 or 1200℃firstly reduces and then increases,the bulk density increases and the apparent porosity decreases;the cold compression strength and the thermal shock resistance of the specimens heat treated at 1200℃firstly increase and then decrease.Thus,the optimal addition of coal gangue ceramsites is 18%.
文摘An ecotypic revetment material consisting of nutrition-expansive perlitic-cement composites is introduced. This planting material can combine vegetation recovery with slope protection. The XRD, SEM and image analysis techniques were used to study its composition and microstructure. Its strength was measured by an electro-hydraulic servo-controlled testing machine. The results show the unconfined compressive strength is about 393.6 kPa, and the average elastic modulus is about 47.0 MPa. The quartz, felspar, chlorite and calcite are the main non-clay minerals in the planting material. Its particles are mainly spherical,and the range of the equivalent diameter is 1.83 to 15.96 μm. The results also show the planting material contains a large amount of micro non-capillary and capillary pores, and has a microstructure characteristic of honeycomb and coralline. CSH gel produced by hydration of cement increases the strength and water stability of the particles. The anisotropy and slight orientation of the particles increase the void cross-section area,providing an explanation of the high permeability for the planting material.The better porosity of the planting material is apt tokeep moisture and nutriment, provides oxygen for plant root breathing, and aids to exhaust the carbon dioxide by means of exchanging with atmosphere, hence it can facilitate vegetation.