Internet of things (IoT) devices make up 30%of all network-connected endpoints,introducing vulnerabilities and novel attacks that make many companies as primary targets for cybercriminals.To address this increasing th...Internet of things (IoT) devices make up 30%of all network-connected endpoints,introducing vulnerabilities and novel attacks that make many companies as primary targets for cybercriminals.To address this increasing threat surface,every organization deploying IoT devices needs to consider security risks to ensure those devices are secure and trusted.Among all the solutions for security risks,firmware security analysis is essential to fix software bugs,patch vulnerabilities,or add new security features to protect users of those vulnerable devices.However,firmware security analysis has never been an easy job due to the diversity of the execution environment and the close source of firmware.These two distinct features complicate the operations to unpack firmware samples for detailed analysis.They also make it difficult to create visual environments to emulate the running of device firmware.Although researchers have developed many novel methods to overcome various challenges in the past decade,critical barriers impede firmware security analysis in practice.Therefore,this survey is motivated to systematically review and analyze the research challenges and their solutions,considering both breadth and depth.Specifically,based on the analysis perspectives,various methods that perform security analysis on IoT devices are introduced and classified into four categories.The challenges in each category are discussed in detail,and potential solutions are proposed subsequently.We then discuss the flaws of these solutions and provide future directions for this research field.This survey can be utilized by a broad range of readers,including software developers,cyber security researchers,and software security engineers,to better understand firmware security analysis.展开更多
Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginner...Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginners,opensource codes are undoubtedly the best alternative to learning TO,which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method.In this paper,we present a summary of various open-source codes and related literature on TO methods,including solid isotropic material with penalization(SIMP),evolutionary method,level set method(LSM),moving morphable components/voids(MMC/MMV)methods,multiscale topology optimization method,etc.Simultaneously,we classify the codes into five levels,fromeasy to difficult,depending on their difficulty,so that beginners can get started and understand the form of code implementation more quickly.展开更多
In today’s society with advanced Internet,the amount of information increases dramatically with each passing day,which leads to increasingly complex processes of open-source intelligence.Therefore,it is more importan...In today’s society with advanced Internet,the amount of information increases dramatically with each passing day,which leads to increasingly complex processes of open-source intelligence.Therefore,it is more important to rationalize the operation mode and improve the operation efficiency of open-source intelligence under the premise of satisfying users’needs.This paper focuses on the simulation study of the process system of opensource intelligence from the user’s perspective.First,the basic concept and development status of open-source intelligence are introduced in details.Second,six existing intelligence operation process models are summarized and their advantages and disadvantages are compared in focus.Based on users’preference,the open-source intelligence system simulation theory model is constructed from four aspects:intelligence collection,intelligence processing,intelligence analysis,and intelligence delivery.Meanwhile,the dynamics model of the open-source intelligence process system is constructed based on the open-source intelligence system simulation theoretical model,which specifically includes five parts:determination of system boundary,construction of causal loop diagram,construction of stock flow diagram,writing ofmathematical equations,and system sensitivity test.Finally,the system simulation results were analyzed.It was found that improving the system of intelligence agencies,opening up government affairs,improving the professional level of intelligence personnel,strengthening the communication and cooperation among personnel of various intelligence departments,and expressing intelligence products through diverse forms can effectively improve the operational efficiency of the open-source intelligence process system.展开更多
With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS pr...With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS project network,namely an Open-Source Software ECOsystem(OSSECO).Unfortunately,not all OS projects in the open-source ecosystem can be healthy and stable in the long term,and more projects will go from active to inactive and gradually die.In a tightly connected ecosystem,the death of one project can potentially cause the collapse of the entire ecosystem network.How can we effectively prevent such situations from happening?In this paper,we first identify the basic project characteristics that affect the survival of OS projects at both project and ecosystem levels through the proportional hazards model.Then,we utilize graph convolutional networks based on the ecosystem network to extract the ecosystem environment characteristics of OS projects.Finally,we fuse basic project characteristics and environmental project characteristics and construct a Hybrid Structured Prediction Model(HSPM)to predict the OS project survival state.The experimental results show that HSPM significantly improved compared to the traditional prediction model.Our work can substantially assist OS project managers in maintaining their projects’health.It can also provide an essential reference for developers when choosing the right open-source project for their production activities.展开更多
Internet of things(IoT)devices are being increasingly used in numerous areas.However,the low priority on security and various IoT types have made these devices vulnerable to attacks.To prevent this,recent studies have...Internet of things(IoT)devices are being increasingly used in numerous areas.However,the low priority on security and various IoT types have made these devices vulnerable to attacks.To prevent this,recent studies have analyzed firmware in an emulation environment that does not require actual devices and is efficient for repeated experiments.However,these studies focused only on major firmware architectures and rarely considered exotic firmware.In addition,because of the diversity of firmware,the emulation success rate is not high in terms of large-scale analyses.In this study,we propose the adaptive emulation framework for multi-architecture(AEMA).In the field of automated emulation frameworks for IoT firmware testing,AEMA considers the following issues:(1)limited compatibility for exotic firmware architectures,(2)emulation instability when configuring an automated environment,and(3)shallow testing range resulting from structured inputs.To tackle these problems,AEMAcan emulate not onlymajor firmware architectures but also exotic firmware architectures not previously considered,such as Xtensa,ColdFire,and reduced instruction set computer(RISC)version five,by implementing a minority emulator.Moreover,we applied the emulation arbitration technique and input keyword extraction technique for emulation stability and efficient test case generation.We compared AEMA with other existing frameworks in terms of emulation success rates and fuzz testing.As a result,AEMA succeeded in emulating 864 out of 1,083 overall experimental firmware and detected vulnerabilities at least twice as fast as the experimental group.Furthermore,AEMAfound a 0-day vulnerability in realworld IoT devices within 24 h.展开更多
Over the past decade, open-source software use has grown. Today, many companies including Google, Microsoft, Meta, RedHat, MongoDB, and Apache are major participants of open-source contributions. With the increased us...Over the past decade, open-source software use has grown. Today, many companies including Google, Microsoft, Meta, RedHat, MongoDB, and Apache are major participants of open-source contributions. With the increased use of open-source software or integration of open-source software into custom-developed software, the quality of this software component increases in importance. This study examined a sample of open-source applications from GitHub. Static software analytics were conducted, and each application was classified for its risk level. In the analyzed applications, it was found that 90% of the applications were classified as low risk or moderate low risk indicating a high level of quality for open-source applications.展开更多
We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This s...We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.展开更多
Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can b...Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can be time-consuming and labor-intensive, resulting in data being collected at a low frequency, while automating the data-collection process can reduce labor requirements and increase the frequency of measurements, but at the cost of added expense of electronic data-collecting instrumentation. Rapid advances in electronic technologies have resulted in a variety of new and inexpensive sensing, monitoring, and control capabilities which offer opportunities for implementation in agricultural and natural-resource research applications. An Open Source Hardware project called Arduino consists of a programmable microcontroller development platform, expansion capability through add-on boards, and a programming development environment for creating custom microcontroller software. All circuit-board and electronic component specifications, as well as the programming software, are open-source and freely available for anyone to use or modify. Inexpensive sensors and the Arduino development platform were used to develop several inexpensive, automated sensing and datalogging systems for use in agricultural and natural-resources related research projects. Systems were developed and implemented to monitor soil-moisture status of field crops for irrigation scheduling and crop-water use studies, to measure daily evaporation-pan water levels for quantifying evaporative demand, and to monitor environmental parameters under forested conditions. These studies demonstrate the usefulness of automated measurements, and offer guidance for other researchers in developing inexpensive sensing and monitoring systems to further their research.展开更多
Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this s...Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this strain,we have designed and tested the accessible low-barrier in vivo-validated economical ventilator(ALIVE Vent),a COVID-19-inspired,cost-effective,open-source,in vivo-validated solution made from commercially available components.The ALIVE Vent operates using compressed oxygen and air to drive inspiration,while two solenoid valves ensure one-way flow and precise cycle timing.The device was functionally tested and profiled using a variable resistance and compliance artificial lung and validated in anesthetized large animals.Our functional test results revealed its effective operation under a wide variety of ventilation conditions defined by the American Association of Respiratory Care guidelines for ventilator stockpiling.The large animal test showed that our ventilator performed similarly if not better than a standard ventilator in maintaining optimal ventilation status.The FiO2,respiratory rate,inspiratory to expiratory time ratio,positive-end expiratory pressure,and peak inspiratory pressure were successfully maintained within normal,clinically validated ranges,and the animals were recovered without any complications.In regions with limited access to ventilators,the ALIVE Vent can help alleviate shortages,and we have ensured that all used materials are publicly available.While this pandemic has elucidated enormous global inequalities in healthcare,innovative,cost-effective solutions aimed at reducing socio-economic barriers,such as the ALIVE Vent,can help enable access to prompt healthcare and life saving technology on a global scale and beyond COVID-19.展开更多
The rise of the Internet of Things(IoT)exposes more and more important embedded devices to the network,which poses a serious threat to people’s lives and property.Therefore,ensuring the safety of embedded devices is ...The rise of the Internet of Things(IoT)exposes more and more important embedded devices to the network,which poses a serious threat to people’s lives and property.Therefore,ensuring the safety of embedded devices is a very important task.Fuzzing is currently the most effective technique for discovering vulnerabilities.In this work,we proposed PS-Fuzz(Protocol State Fuzz),a gray-box fuzzing technique based on protocol state orientation.By instrumenting the program that handles protocol fields in the firmware,the problem of lack of guidance information in common protocol fuzzing is solved.By recording and comparing state transition paths,the program can be quickly booted,thereby greatly improving the efficiency of fuzzing.More importantly,the tool utilizes the synchronous execution of the firmware simulator and the firmware program,which can collect and record system information in the event of a crash from multiple dimensions,providing assistance for further research.Our evaluation results show that for the same vulnerability,the efficiency of PS-Fuzz is about 8 times that of boofuzz under ideal conditions.Even rough instrumentation efficiency can reach 2 times that of boofuzz.In addition,PS-Fuzz can provide at least 6 items more information than boofuzz under the same circumstances.展开更多
Surface albedo is defined as the ratio of incident and reflected solar irradiance and describes the ability of a surface to reflect, rather than absorb incident solar shortwave radiation. It is thus a crucial paramete...Surface albedo is defined as the ratio of incident and reflected solar irradiance and describes the ability of a surface to reflect, rather than absorb incident solar shortwave radiation. It is thus a crucial parameter in the climate system, particularly in the polar oceans. Sea ice albedo is a main driver for light transmission into the polar oceans and thus has a high impact on ocean warming, ice melting and marine primary production. During spring and summer, sea ice albedo can exhibit a significant spatial variability caused by meltwater accumulations on the ice. While complex and expensive solutions for albedo measurements are already available, we want to present a simple open-source design that allows for affordable mapping of spatially varying surface albedo on sea ice and beyond. Our solution is based on off-the-shelf components, such as an Arduino microcontroller integrating affordable light sensors, a GPS unit, data recording on memory card and data display into a simple field strengthened unit. We provide example data from two Arctic field deployments showing the capabilities and limitations of this system.展开更多
Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and ...Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment,with advantages such as accuracy,comfort of use,cost effectiveness,and embedded computation capabilities to recognise,store,process,and transmit time series data.In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave(SAW)platform(Apnoea-Pi)to monitor and recognise apnoea in patients.The platform is based on a thin-film SAW device using bimorph ZnO and Al structures,including those fabricated as Al foils or plates,to achieve breath tracking based on humidity and temperature changes.We applied open-source electronics and provided embedded computing characteristics for signal processing,data recognition,storage,and transmission of breath signals.We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes.This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.展开更多
There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source ...There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source geospatial resources has sparked development of web-based spatial applications to address multidisciplinary issues with spatial dimensions. This paper presents the integration of open-source geospatial tools and web technology to visualize and interact with spatial data using web browser. The goal of this paper is to implement a prototype system for web-based mapping by providing step-by-step instructions in order to encourage the eager developers and interested readers to publish their maps on the web with no prior technical experience in map servers. The implementation of mapping prototype shows the utilization of open-source geospatial tools which results in a rapid implementation with minimal or no software input cost.展开更多
With the rise of open-source software,the social development paradigm occupies an indispensable position in the current software development process.This paper puts forward a variant of the PageRank algorithm to build...With the rise of open-source software,the social development paradigm occupies an indispensable position in the current software development process.This paper puts forward a variant of the PageRank algorithm to build the importance assessment model,which provides quantifiable importance assessment metrics for new Java projects based on Java open-source projects or components.The critical point of the model is to use crawlers to obtain relevant information about Java open-source projects in the GitHub open-source community to build a domain knowledge graph.According to the three dimensions of the Java open-source project’s project influence,project activity and project popularity,the project is measured.A modified PageRank algorithm is proposed to construct the importance evaluation model.Thereby providing quantifiable importance evaluation indicators for new Java projects based on or components of Java open-source projects.This article evaluates the importance of 4512 Java open-source projects obtained on GitHub and has a good effect.展开更多
文摘Internet of things (IoT) devices make up 30%of all network-connected endpoints,introducing vulnerabilities and novel attacks that make many companies as primary targets for cybercriminals.To address this increasing threat surface,every organization deploying IoT devices needs to consider security risks to ensure those devices are secure and trusted.Among all the solutions for security risks,firmware security analysis is essential to fix software bugs,patch vulnerabilities,or add new security features to protect users of those vulnerable devices.However,firmware security analysis has never been an easy job due to the diversity of the execution environment and the close source of firmware.These two distinct features complicate the operations to unpack firmware samples for detailed analysis.They also make it difficult to create visual environments to emulate the running of device firmware.Although researchers have developed many novel methods to overcome various challenges in the past decade,critical barriers impede firmware security analysis in practice.Therefore,this survey is motivated to systematically review and analyze the research challenges and their solutions,considering both breadth and depth.Specifically,based on the analysis perspectives,various methods that perform security analysis on IoT devices are introduced and classified into four categories.The challenges in each category are discussed in detail,and potential solutions are proposed subsequently.We then discuss the flaws of these solutions and provide future directions for this research field.This survey can be utilized by a broad range of readers,including software developers,cyber security researchers,and software security engineers,to better understand firmware security analysis.
基金supported by the National Key R&D Program of China[Grant Number 2020YFB1708300]the National Natural Science Foundation of China[Grant Number 52075184].
文摘Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginners,opensource codes are undoubtedly the best alternative to learning TO,which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method.In this paper,we present a summary of various open-source codes and related literature on TO methods,including solid isotropic material with penalization(SIMP),evolutionary method,level set method(LSM),moving morphable components/voids(MMC/MMV)methods,multiscale topology optimization method,etc.Simultaneously,we classify the codes into five levels,fromeasy to difficult,depending on their difficulty,so that beginners can get started and understand the form of code implementation more quickly.
基金supported by the National Social Science Foundation of China under the project“Research on the mechanism of developing and utilizing domestic and foreign open-source intelligence under product-oriented thinking(20BTQ049)”.
文摘In today’s society with advanced Internet,the amount of information increases dramatically with each passing day,which leads to increasingly complex processes of open-source intelligence.Therefore,it is more important to rationalize the operation mode and improve the operation efficiency of open-source intelligence under the premise of satisfying users’needs.This paper focuses on the simulation study of the process system of opensource intelligence from the user’s perspective.First,the basic concept and development status of open-source intelligence are introduced in details.Second,six existing intelligence operation process models are summarized and their advantages and disadvantages are compared in focus.Based on users’preference,the open-source intelligence system simulation theory model is constructed from four aspects:intelligence collection,intelligence processing,intelligence analysis,and intelligence delivery.Meanwhile,the dynamics model of the open-source intelligence process system is constructed based on the open-source intelligence system simulation theoretical model,which specifically includes five parts:determination of system boundary,construction of causal loop diagram,construction of stock flow diagram,writing ofmathematical equations,and system sensitivity test.Finally,the system simulation results were analyzed.It was found that improving the system of intelligence agencies,opening up government affairs,improving the professional level of intelligence personnel,strengthening the communication and cooperation among personnel of various intelligence departments,and expressing intelligence products through diverse forms can effectively improve the operational efficiency of the open-source intelligence process system.
基金This work was supported by the National Social Science Foundation(NSSF)Research on intelligent recommendation of multi-modal resources for children’s graded reading in smart library(22BTQ033)the Science and Technology Research and Development Program Project of China railway group limited(Project No.2021-Special-08).
文摘With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS project network,namely an Open-Source Software ECOsystem(OSSECO).Unfortunately,not all OS projects in the open-source ecosystem can be healthy and stable in the long term,and more projects will go from active to inactive and gradually die.In a tightly connected ecosystem,the death of one project can potentially cause the collapse of the entire ecosystem network.How can we effectively prevent such situations from happening?In this paper,we first identify the basic project characteristics that affect the survival of OS projects at both project and ecosystem levels through the proportional hazards model.Then,we utilize graph convolutional networks based on the ecosystem network to extract the ecosystem environment characteristics of OS projects.Finally,we fuse basic project characteristics and environmental project characteristics and construct a Hybrid Structured Prediction Model(HSPM)to predict the OS project survival state.The experimental results show that HSPM significantly improved compared to the traditional prediction model.Our work can substantially assist OS project managers in maintaining their projects’health.It can also provide an essential reference for developers when choosing the right open-source project for their production activities.
基金This work was supported by the Ministry of Science and ICT(MSIT)Korea,under the Information Technology Research Center(ITRC)support program(IITP-2022-2018-0-01423)+2 种基金supervised by the Institute for Information&Communications Technology Planning&Evaluation(IITP)by MSIT,Korea under the ITRC support program(IITP-2021-2020-0-01602)supervised by the IITP.
文摘Internet of things(IoT)devices are being increasingly used in numerous areas.However,the low priority on security and various IoT types have made these devices vulnerable to attacks.To prevent this,recent studies have analyzed firmware in an emulation environment that does not require actual devices and is efficient for repeated experiments.However,these studies focused only on major firmware architectures and rarely considered exotic firmware.In addition,because of the diversity of firmware,the emulation success rate is not high in terms of large-scale analyses.In this study,we propose the adaptive emulation framework for multi-architecture(AEMA).In the field of automated emulation frameworks for IoT firmware testing,AEMA considers the following issues:(1)limited compatibility for exotic firmware architectures,(2)emulation instability when configuring an automated environment,and(3)shallow testing range resulting from structured inputs.To tackle these problems,AEMAcan emulate not onlymajor firmware architectures but also exotic firmware architectures not previously considered,such as Xtensa,ColdFire,and reduced instruction set computer(RISC)version five,by implementing a minority emulator.Moreover,we applied the emulation arbitration technique and input keyword extraction technique for emulation stability and efficient test case generation.We compared AEMA with other existing frameworks in terms of emulation success rates and fuzz testing.As a result,AEMA succeeded in emulating 864 out of 1,083 overall experimental firmware and detected vulnerabilities at least twice as fast as the experimental group.Furthermore,AEMAfound a 0-day vulnerability in realworld IoT devices within 24 h.
文摘Over the past decade, open-source software use has grown. Today, many companies including Google, Microsoft, Meta, RedHat, MongoDB, and Apache are major participants of open-source contributions. With the increased use of open-source software or integration of open-source software into custom-developed software, the quality of this software component increases in importance. This study examined a sample of open-source applications from GitHub. Static software analytics were conducted, and each application was classified for its risk level. In the analyzed applications, it was found that 90% of the applications were classified as low risk or moderate low risk indicating a high level of quality for open-source applications.
文摘We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.
文摘Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can be time-consuming and labor-intensive, resulting in data being collected at a low frequency, while automating the data-collection process can reduce labor requirements and increase the frequency of measurements, but at the cost of added expense of electronic data-collecting instrumentation. Rapid advances in electronic technologies have resulted in a variety of new and inexpensive sensing, monitoring, and control capabilities which offer opportunities for implementation in agricultural and natural-resource research applications. An Open Source Hardware project called Arduino consists of a programmable microcontroller development platform, expansion capability through add-on boards, and a programming development environment for creating custom microcontroller software. All circuit-board and electronic component specifications, as well as the programming software, are open-source and freely available for anyone to use or modify. Inexpensive sensors and the Arduino development platform were used to develop several inexpensive, automated sensing and datalogging systems for use in agricultural and natural-resources related research projects. Systems were developed and implemented to monitor soil-moisture status of field crops for irrigation scheduling and crop-water use studies, to measure daily evaporation-pan water levels for quantifying evaporative demand, and to monitor environmental parameters under forested conditions. These studies demonstrate the usefulness of automated measurements, and offer guidance for other researchers in developing inexpensive sensing and monitoring systems to further their research.
基金the National Institutes of Health(NIH R01 HL089315-01 and NIH R01 HL152155,YJW)the Thoracic Surgery Foundation Resident Research Fellowship(YZ)the National Science Foundation Graduate Research Fellowship Program(AMI).
文摘Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this strain,we have designed and tested the accessible low-barrier in vivo-validated economical ventilator(ALIVE Vent),a COVID-19-inspired,cost-effective,open-source,in vivo-validated solution made from commercially available components.The ALIVE Vent operates using compressed oxygen and air to drive inspiration,while two solenoid valves ensure one-way flow and precise cycle timing.The device was functionally tested and profiled using a variable resistance and compliance artificial lung and validated in anesthetized large animals.Our functional test results revealed its effective operation under a wide variety of ventilation conditions defined by the American Association of Respiratory Care guidelines for ventilator stockpiling.The large animal test showed that our ventilator performed similarly if not better than a standard ventilator in maintaining optimal ventilation status.The FiO2,respiratory rate,inspiratory to expiratory time ratio,positive-end expiratory pressure,and peak inspiratory pressure were successfully maintained within normal,clinically validated ranges,and the animals were recovered without any complications.In regions with limited access to ventilators,the ALIVE Vent can help alleviate shortages,and we have ensured that all used materials are publicly available.While this pandemic has elucidated enormous global inequalities in healthcare,innovative,cost-effective solutions aimed at reducing socio-economic barriers,such as the ALIVE Vent,can help enable access to prompt healthcare and life saving technology on a global scale and beyond COVID-19.
基金This work is funded by the National Key Research and Development Plan(Grant No.2018YFB0803504)the National Natural Science Foundation of China(Nos.62072130,61702223,61702220,61871140,61872420,U1636215)+3 种基金the Guangdong Province Key Area R&D Program of China(No.2019B010137004)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010450)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019)the Opening Project of Shanghai Trusted Industrial Control Platform(TICPSH202003014-ZC).
文摘The rise of the Internet of Things(IoT)exposes more and more important embedded devices to the network,which poses a serious threat to people’s lives and property.Therefore,ensuring the safety of embedded devices is a very important task.Fuzzing is currently the most effective technique for discovering vulnerabilities.In this work,we proposed PS-Fuzz(Protocol State Fuzz),a gray-box fuzzing technique based on protocol state orientation.By instrumenting the program that handles protocol fields in the firmware,the problem of lack of guidance information in common protocol fuzzing is solved.By recording and comparing state transition paths,the program can be quickly booted,thereby greatly improving the efficiency of fuzzing.More importantly,the tool utilizes the synchronous execution of the firmware simulator and the firmware program,which can collect and record system information in the event of a crash from multiple dimensions,providing assistance for further research.Our evaluation results show that for the same vulnerability,the efficiency of PS-Fuzz is about 8 times that of boofuzz under ideal conditions.Even rough instrumentation efficiency can reach 2 times that of boofuzz.In addition,PS-Fuzz can provide at least 6 items more information than boofuzz under the same circumstances.
基金the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar und Meeresforschungthe Helmholtz infrastructure initiative “Frontiers in Arctic marine Monitoring” (FRAM) for funding this projectfunded by a Sentinel North Postdoctoral Research Fellowship at Université Laval, Canada
文摘Surface albedo is defined as the ratio of incident and reflected solar irradiance and describes the ability of a surface to reflect, rather than absorb incident solar shortwave radiation. It is thus a crucial parameter in the climate system, particularly in the polar oceans. Sea ice albedo is a main driver for light transmission into the polar oceans and thus has a high impact on ocean warming, ice melting and marine primary production. During spring and summer, sea ice albedo can exhibit a significant spatial variability caused by meltwater accumulations on the ice. While complex and expensive solutions for albedo measurements are already available, we want to present a simple open-source design that allows for affordable mapping of spatially varying surface albedo on sea ice and beyond. Our solution is based on off-the-shelf components, such as an Arduino microcontroller integrating affordable light sensors, a GPS unit, data recording on memory card and data display into a simple field strengthened unit. We provide example data from two Arctic field deployments showing the capabilities and limitations of this system.
基金financially supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/P018998/1the UK Fluidic Network Special Interest Group of Acoustofluidics (EP/N032861/1).
文摘Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment,with advantages such as accuracy,comfort of use,cost effectiveness,and embedded computation capabilities to recognise,store,process,and transmit time series data.In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave(SAW)platform(Apnoea-Pi)to monitor and recognise apnoea in patients.The platform is based on a thin-film SAW device using bimorph ZnO and Al structures,including those fabricated as Al foils or plates,to achieve breath tracking based on humidity and temperature changes.We applied open-source electronics and provided embedded computing characteristics for signal processing,data recognition,storage,and transmission of breath signals.We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes.This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.
文摘There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source geospatial resources has sparked development of web-based spatial applications to address multidisciplinary issues with spatial dimensions. This paper presents the integration of open-source geospatial tools and web technology to visualize and interact with spatial data using web browser. The goal of this paper is to implement a prototype system for web-based mapping by providing step-by-step instructions in order to encourage the eager developers and interested readers to publish their maps on the web with no prior technical experience in map servers. The implementation of mapping prototype shows the utilization of open-source geospatial tools which results in a rapid implementation with minimal or no software input cost.
基金This work has been supported by the National Science Foundation of China Grant No.61762092“Dynamic multi-objective requirement optimization based on transfer learning,”and the Open Foundation of the Key Laboratory in Software Engineering of Yunnan Province,Grant No.2017SE204+1 种基金“Research on extracting software feature models using transfer learning,”and the National Science Foundation of China Grant No.61762089“The key research of high order tensor decomposition in a distributed environment”.
文摘With the rise of open-source software,the social development paradigm occupies an indispensable position in the current software development process.This paper puts forward a variant of the PageRank algorithm to build the importance assessment model,which provides quantifiable importance assessment metrics for new Java projects based on Java open-source projects or components.The critical point of the model is to use crawlers to obtain relevant information about Java open-source projects in the GitHub open-source community to build a domain knowledge graph.According to the three dimensions of the Java open-source project’s project influence,project activity and project popularity,the project is measured.A modified PageRank algorithm is proposed to construct the importance evaluation model.Thereby providing quantifiable importance evaluation indicators for new Java projects based on or components of Java open-source projects.This article evaluates the importance of 4512 Java open-source projects obtained on GitHub and has a good effect.