期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MECHANISM OF WALL PRESSURE FLUCTUATIONS BENEATH THE OPEN CHANNEL FLOW 被引量:1
1
作者 ZHAO YAONAN, Tianjin University 《Journal of Hydrodynamics》 SCIE EI CSCD 1989年第1期52-60,共9页
Based on the measured results that wall pressure fluctuations are mainly de- cided by coherent structures of turbulence, the relationship between root-mean- square wall pressure and wall shear stress in turbulent shea... Based on the measured results that wall pressure fluctuations are mainly de- cided by coherent structures of turbulence, the relationship between root-mean- square wall pressure and wall shear stress in turbulent shear flow and that between the intensities of pressure and fluctuating velocity in homogeneous and isotropic turbulence are established in this paper. These relationships are consistent with former works, and have good agreement with experimental data. The paper also dis- cusses the concept of 'apparent pressure' on the wall in mean flow. 展开更多
关键词 mechanism OF WALL PRESSURE FLUCTUATIONS BENEATH THE OPEN CHANNEL FLOW
原文传递
The mechanical energy equation for total flow in open channels 被引量:4
2
作者 刘士和 范敏 薛娇 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第3期416-423,共8页
The mechanical energy equation is a fundamental equation of a 1-D mathematical model in Hydraulics and Engineering Fluid Mechanics. This equation for the total flow used to be deduced by extending the Bernoulli's equ... The mechanical energy equation is a fundamental equation of a 1-D mathematical model in Hydraulics and Engineering Fluid Mechanics. This equation for the total flow used to be deduced by extending the Bernoulli's equation for the ideal fluid in the streamline to a stream tube, and then revised by considering the viscous effect and integrated on the cross section. This derivation is not rigorous and the effect of turbulence is not considered. In this paper, the energy equation for the total flow is derived by using the Navier-Stokes equations in Fluid Mechanics, the results are as follows:(1) A new energy equation for steady channel flows of incompressible homogeneous liquid is obtained, which includes the variation of the turbulent kinetic energy along the channel, the formula for the mechanical energy loss of the total flow can be determined directly in the deduction process.(2) The theoretical solution of the velocity field for laminar flows in a rectangular open channel is obtained and the mechanical energy loss in the energy equation is calculated. The variations of the coefficient of the mechanical energy loss against the Reynolds number and the width-depth ratio are obtained.(3) The turbulent flow in a rectangular open channel is simulated using 3-D Reynolds averaged equations closed by the Reynolds stress model(RSM), and the variations of the coefficient of the mechanical energy loss against the Reynolds number and the width-depth ratio are discussed. 展开更多
关键词 open channel mechanical energy equation steady flow turbulent flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部