In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficu...In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo- rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.展开更多
We study the one-dimensional asymmetric simple exclusion process (ASEP) with generic open boundaries (in- cluding current-counting deformation), and obtain the exact solutions of this ASEP via the off-diagonal Bet...We study the one-dimensional asymmetric simple exclusion process (ASEP) with generic open boundaries (in- cluding current-counting deformation), and obtain the exact solutions of this ASEP via the off-diagonal Bethe ansatz method. In particular, numerical results for the small size asymmetric simple exclusion process indicate that the spectrum obtained by the Bethe ansatz equations is complete. Moreover, we present the eigenvalue of the totally asymmetric exclusion process and the corresponding Bethe ansatz equations.展开更多
Incoherent optical processing of microwave signals,where low-coherence broadband light sources are employed instead of costly mode locked lasers,has attracted great interest thanks to its wide applications in microwav...Incoherent optical processing of microwave signals,where low-coherence broadband light sources are employed instead of costly mode locked lasers,has attracted great interest thanks to its wide applications in microwave photonics filtering[1–3],arbitrary generation[4–6]and analog to digital conversion[7]。展开更多
This study proposes two different methods of photocatalytic-controlled and visible light-induced selective oxidation of pyridiniums with air as the terminal oxidant.The key to these transformations is to choose the ap...This study proposes two different methods of photocatalytic-controlled and visible light-induced selective oxidation of pyridiniums with air as the terminal oxidant.The key to these transformations is to choose the appropriate light source and photocatalyst.Pyridiniums are successfully converted into pyrroles through oxygen-mediated cycloaddition,proton-coupled electron transfer(PCET),pyridine ring opening,and recyclization.The other route is that pyridiniums selectively form 4-carbonyl pyridines through free radical rearrangement/aerobic oxidation under the catalysis of cobalt(Ⅱ).展开更多
Wastewater from the thermochemical conversion of coal and biomass contains a significant amount of phenolic structures compounds.The degradation of these phenolic compounds to hydrogen-rich gasses can prevent envi-ron...Wastewater from the thermochemical conversion of coal and biomass contains a significant amount of phenolic structures compounds.The degradation of these phenolic compounds to hydrogen-rich gasses can prevent envi-ronmental pollution and save energy.Supercritical water(SCW)gasification of phenol is experimentally studied and a reactive force field molecular dynamics(ReaxFF-MD)simulation is conducted to investigate the catalytic mechanism of Ni/Al2 O3 in the phenol degradation.The experimental results indicate that Ni/Al2 O3 facilitates the conversion of phenol to 1-ethoxy butane via ring opening,which is a crucial step for complete gasification.The ReaxFF-MD simulation demonstrated that Ni facilitates the formation of H3 O free radicals and Ni-phenol inter-mediates.H3 O free radicals can be decomposed into H2 and OH free radicals.Both the generated OH free radical and Ni-phenol intermediate promote the ring-opening reaction of phenol.Ni promotes the direct decomposition of phenol into C1,C2,and C3 fragments,which is beneficial for further complete gasification.展开更多
基金the National Natural Science Foundation of China(10377006).
文摘In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo- rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11375141,11475135,11434013 and 11425522the Ministry of Education Doctoral Program Fund under Grant No 20126101110004the Northwest University Graduate Student Innovation Fund under Grant No YZZ14104
文摘We study the one-dimensional asymmetric simple exclusion process (ASEP) with generic open boundaries (in- cluding current-counting deformation), and obtain the exact solutions of this ASEP via the off-diagonal Bethe ansatz method. In particular, numerical results for the small size asymmetric simple exclusion process indicate that the spectrum obtained by the Bethe ansatz equations is complete. Moreover, we present the eigenvalue of the totally asymmetric exclusion process and the corresponding Bethe ansatz equations.
文摘Incoherent optical processing of microwave signals,where low-coherence broadband light sources are employed instead of costly mode locked lasers,has attracted great interest thanks to its wide applications in microwave photonics filtering[1–3],arbitrary generation[4–6]and analog to digital conversion[7]。
基金This work was supported by the National Natural Science Foundation of China(22061003,21861006)the Guangxi Natural Science Foundation of China(2016GXNSFEA380001,2019GXNSFAA245027)+2 种基金the Guangxi Key R&D Program(AB18221005)the Science and Technology Major Project of Guangxi(AA17204058-21)Guangxi Science and Technology Base and Special Talents(guike AD19110027).
文摘This study proposes two different methods of photocatalytic-controlled and visible light-induced selective oxidation of pyridiniums with air as the terminal oxidant.The key to these transformations is to choose the appropriate light source and photocatalyst.Pyridiniums are successfully converted into pyrroles through oxygen-mediated cycloaddition,proton-coupled electron transfer(PCET),pyridine ring opening,and recyclization.The other route is that pyridiniums selectively form 4-carbonyl pyridines through free radical rearrangement/aerobic oxidation under the catalysis of cobalt(Ⅱ).
基金supported by the National Natural Science Founda-tion of China(Grant Nos.:51976046 and 52006044)the Shenzhen Technology Project(Grant No.:RCJC20210609103755110).
文摘Wastewater from the thermochemical conversion of coal and biomass contains a significant amount of phenolic structures compounds.The degradation of these phenolic compounds to hydrogen-rich gasses can prevent envi-ronmental pollution and save energy.Supercritical water(SCW)gasification of phenol is experimentally studied and a reactive force field molecular dynamics(ReaxFF-MD)simulation is conducted to investigate the catalytic mechanism of Ni/Al2 O3 in the phenol degradation.The experimental results indicate that Ni/Al2 O3 facilitates the conversion of phenol to 1-ethoxy butane via ring opening,which is a crucial step for complete gasification.The ReaxFF-MD simulation demonstrated that Ni facilitates the formation of H3 O free radicals and Ni-phenol inter-mediates.H3 O free radicals can be decomposed into H2 and OH free radicals.Both the generated OH free radical and Ni-phenol intermediate promote the ring-opening reaction of phenol.Ni promotes the direct decomposition of phenol into C1,C2,and C3 fragments,which is beneficial for further complete gasification.