期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Exploring battery material failure mechanisms through synchrotron X-ray characterization techniques 被引量:1
1
作者 Lingzhe Fang Xiaozhao Liu Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期128-135,共8页
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch... Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism. 展开更多
关键词 Battery failure Synchrotron-based techniques x-ray scattering x-ray absorption spectroscopy
下载PDF
Understanding Pseudocapacitance Mechanisms by Synchrotron X-ray Analytical Techniques 被引量:1
2
作者 Pei Tang Wuyang Tan +7 位作者 Guangyang Deng Yunting Zhang Shan Xu Qijun Wang Guosheng Li Jian Zhu Qingyun Dou Xingbin Yan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期312-331,共20页
Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure... Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed. 展开更多
关键词 in situ experiments pseudocapacitive materials structure-property relationship synchrotron x-ray analytical techniques
下载PDF
Ultrasmall CoS nanoparticles embedded in heteroatom-doped carbon for sodium-ion batteries and mechanism explorations via synchrotron X-ray techniques
3
作者 Congcong Liu Qiongqiong Lu +8 位作者 Mikhail V.Gorbunov Ahmad Omar Ignacio G.Gonzalez Martinez Panpan Zhao Martin Hantusch Antonius Dimas Chandra Permana Huanyu He Nikolai Gaponik Daria Mikhailova 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期373-381,共9页
Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity... Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity fade and low rate capability.In this work,a composite containing ultrasmall CoS(~7 nm)nanoparticles embedded in heteroatom(N,S,and O)-doped carbon was synthesized by an efficient one-step sulfidation process using a Co(Salen)precursor.The ultrasmall CoS nanoparticles are beneficial for mechanical stability and shortening Na-ions diffusion pathways.Furthermore,the N,S,and O-doped defect-rich carbon provides a robust and highly conductive framework enriched with active sites for sodium storage as well as mitigates volume expansion and polysulfide shuttle.As anode for SIB,CoS@HDC exhibits a high initial capacity of 906 mA h g^(-1)at 100 mA g^(-1)and a stable long-term cycling life with over 1000 cycles at 500 mA g^(-1),showing a reversible capacity of 330 mA h g^(-1).Meanwhile,the CoS@HDC anode is proven to maintain its structural integrity and compositional reversibility during cycling.Furthermore,Na-ion full batteries based on the CoS@HDC anode and Na_(3)V_(2)(PO_(4))_(3)cathode demonstrate a stable cycling behavior with a reversible specific capacity of~200 m A h g^(-1)at least for 100 cycles.Moreover,advanced synchrotron operando X-ray diffraction,ex-situ X-ray absorption spectroscopy,and comprehensive electrochemical tests reveal the structural transformation and the Co coordination chemistry evolution of the CoS@HDC during cycling,providing fundamental insights into the sodium storage mechanism. 展开更多
关键词 Sodium-ion batteries Cobalt sulfide nanoparticles Heteroatom-doped porous carbon matrix Synchrotron x-ray techniques Reaction mechanisms
下载PDF
Tracking the phase transformation and microstructural evolution of Sn anode using operando synchrotron X-ray energy-dispersive diffraction and X-ray tomography 被引量:1
4
作者 Kang Dong Fu Sun +4 位作者 Andre Hilger Paul H.Kamm Markus Osenberg Francisco Garcia-Moreno Ingo Manke 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期429-437,I0011,共10页
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol... Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries. 展开更多
关键词 Sn anode Li-Sn phase transformation x-ray tomography operando x-ray diffraction Anisotropic displacement Digital volume correlation(DVC)
下载PDF
In-situ/operando characterization techniques in lithium-ion batteries and beyond 被引量:8
5
作者 Haoyu Li Shaohua Guo Haoshen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期191-211,I0005,共22页
Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applica... Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research. 展开更多
关键词 In-situ/operando Characterization techniques Secondary batteries
下载PDF
The application of synchrotron X-ray techniques to the study ofrechargeable batteries 被引量:4
6
作者 Zhengliang Gong Yong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1566-1583,共18页
The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for... The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for high performance batteries with increased energy density, cycle and calendar life, safety andlower costs. This triggers significant efforts to reveal the fundamental mechanism determining batteryperformance with the use of advanced analytical techniques. However, the inherently complex character-istics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiationis an advanced collimated light source with high intensity and tunable energies. It has particular ad-vantages in electronic structure and geometric structure (both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray tech-niques have been widely used to understand the fundamental mechanism and guide the technologicaloptimization of batteries. In particular, in situ and operando techniques with high spatial and temporalresolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism. This review gives a brief introduction of the application of synchrotron X-ray techniques to the inves-tigation of battery systems. The five widely implicated techniques, including X-ray diffraction (XRD), PairDistribution Function (PDF), Hard and Soft X-ray absorption spectroscopy (XAS) and X-ray photoelectronspectroscopy (XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling. 展开更多
关键词 Rechargeable battery Synchrotron x-ray techniques x-ray diffraction x-ray absorption spectroscopy Pair Distribution Function x-ray photoelectron spectroscopy
下载PDF
Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques 被引量:5
7
作者 Paola Pisani Maria Daniela Renna +5 位作者 Francesco Conversano Ernesto Casciaro Maurizio Muratore Eugenio Quarta Marco Di Paola Sergio Casciaro 《World Journal of Radiology》 CAS 2013年第11期398-410,共13页
Effective prevention and management of osteoporosis would require suitable methods for population screenings and early diagnosis. Current clinicallyavailable diagnostic methods are mainly based on the use of either X-... Effective prevention and management of osteoporosis would require suitable methods for population screenings and early diagnosis. Current clinicallyavailable diagnostic methods are mainly based on the use of either X-rays or ultrasound(US). All X-ray based methods provide a measure of bone mineral density(BMD), but it has been demonstrated that other structural aspects of the bone are important in determining fracture risk, such as mechanical features and elastic properties, which cannot be assessed using densitometric techniques. Among the most commonly used techniques, dual X-ray absorptiometry(DXA) is considered the current 'gold standard' for osteoporosis diagnosis and fracture risk prediction. Unfortunately, as other X-ray based techniques, DXA has specific limitations(e.g., use of ionizing radiation, large size of the equipment, high costs, limited availability) that hinder its application for population screenings and primary care diagnosis. This has resulted in an increasing interest in developing reliable pre-screening tools for osteoporosis such as quantitative ultrasound(QUS) scanners, which do not involve ionizing radiation exposure and represent a cheaper solution exploiting portable and widely available devices. Furthermore, the usefulness of QUS techniques in fracture risk prediction has been proven and, with the last developments, they are also becoming a more and more reliable approach for assessing bone quality. However, the US assessment of osteoporosis is currently used only as a pre-screening tool, requiring a subsequent diagnosis confirmation by means of a DXA evaluation. Here we illustrate the state of art in the early diagnosis of this 'silent disease' and show up recent advances for its prevention and improved management through early diagnosis. 展开更多
关键词 Diagnosis of OSTEOPOROSIS SCREENING techniqueS x-ray BASED methods Quantitative ULTRASOUND Peripheral sites Bone mineral density
下载PDF
Dynamic phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) olivine cathode material for lithium-ion batteries revealed through in-situ X-ray techniques 被引量:4
8
作者 Sujeera Pleuksachat Phongsit Krabao +6 位作者 Sarawut Pongha Viyada Harnchana Pawinee Klangtakai Wanwisa Limphirat Siriwat Soontaranon Jeffrey Nash Nonglak Meethong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期452-459,I0012,共9页
LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe... LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe PO4 olivine cathodes.Understanding the phase transition behaviors and kinetics of this material will help researchers to design and develop next generation cathodes for Li-ion batteries.In this study,we investigated non-equilibrium phase transition behaviors in a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material during charge–discharge processes by varying current rates(C-rates)using synchrotron in-situ X-ray techniques.These methods included wide angle X-ray scattering(in-situ WAXS)and X-ray absorption spectroscopy(in-situ XAS).The WAXS spectra indicate that the phase transition of LiMn_(0.5)Fe_(0.5)PO_(4) material at slow C-rates is induced by a two-phase reaction.In contrast,at a high C-rate(5 C),the formation of an intermediate phase upon discharge is clearly observed.Concurrently,the oxidation numbers of the redox reactions of Fe^(2+)/Fe^(3+)and Mn^(2+)/Mn^(3+)were evaluated using in-situ XAS.This combination of synchrotron in-situ X-ray techniques gives clear insights into the non-equilibrium phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material.This new understanding will be useful for further developments of this highly promising cathode material for practical commercialization. 展开更多
关键词 LiMn_(0.5)Fe_(0.5)PO_(4) Phase transition In-situ x-ray techniques
下载PDF
Local structural evolutions of CuO/ZnO/Al2O3 catalyst for methanol synthesis under operando conditions studied by in situ quick X-ray absorption spectroscopy 被引量:4
9
作者 Xue-Ping Sun Fan-Fei Sun +5 位作者 Song-Qi Gu Jing Chen Xian-Long Du Jian-Qiang Wang Yu-Ying Huang Zheng Jiang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第2期35-43,共9页
In situ quick X-ray absorption spectroscopy(QXAFS) at the Cu and Zn K-edge under operando conditions has been used to unravel the Cu/Zn interaction and identify possible active site of CuO/ZnO/Al_2O_3 catalyst for met... In situ quick X-ray absorption spectroscopy(QXAFS) at the Cu and Zn K-edge under operando conditions has been used to unravel the Cu/Zn interaction and identify possible active site of CuO/ZnO/Al_2O_3 catalyst for methanol synthesis. In this work, the catalyst, whose activity increases with the reaction temperature and pressure, was studied at calcined, reduced, and reacted conditions. TEM and EDX images for the calcined and reduced catalysts showed that copper was distributed uniformly at both conditions. TPR profile revealed two reduction peaks at 165 and 195 °C for copper species in the calcined catalyst. QXAFS results demonstrated that the calcined form consisted mainly of a mixed Cu O and Zn O, and it was progressively transformed into Cu metal particles and dispersed Zn O species as the reduction treatment. It was demonstrated that activation of the catalyst precursor occurred via a Cu^+intermediate, and the active catalyst predominantly consisted of metallic Cu and Zn O evenunder higher pressures. Structure of the active catalyst did not change with the temperature or pressure, indicating that the role of the Zn was mainly to improve Cu dispersion.This indicates the potential of QXAFS method in studying the structure evolutions of catalysts in methanol synthesis. 展开更多
关键词 In SITU Quick x-ray ABSORPTION spectroscopy CuO/ZnO/Al2O3 CATALYST operando condition
下载PDF
Operando X-ray diffraction analysis of the degradation mechanisms of a spinel LiMn2O4 cathode in different voltage windows 被引量:2
10
作者 Fakui Luo Congcong Wei +6 位作者 Chi Zhang Hui Gao Jiazheng Niu Wensheng Ma Zhangquan Peng Yanwen Bai Zhonghua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期138-146,共9页
The understanding of reaction mechanisms of electrode materials is of significant importance for the development of advanced batteries.The LiMn2O4 cathode has a voltage plateau around 2.8 V(vs.Li^+/Li),which can provi... The understanding of reaction mechanisms of electrode materials is of significant importance for the development of advanced batteries.The LiMn2O4 cathode has a voltage plateau around 2.8 V(vs.Li^+/Li),which can provide an additional capacity for Li storage,but it suffers from a severe capacity degradation.In this study,operando X-ray diffraction is carried out to investigate the structural evolutions and degradation mechanisms of LiMn2O4 in different voltage ranges.In the range of 3.0-4.3 V(vs.Li^+/Li),the LiMn2O4 cathode exhibits a low capacity but good cycling stability with cycles up to 100 cycles and the charge/discharge processes are associated with the reversible extraction/insertion of Li^+from/into LixMn2O4(0≤x≤1).In the range of 1.4-4.4 V(vs.Li^+/Li),a capacity higher than 200 mAh/g is achieved,but it rapidly decays during the cycling.The voltage plateau around 2.8 V(vs.Li^+/Li)is related to the transformation of the cubic LiMn2O4 phase to the tetragonal Li2Mn2O4 phase,which leads to the formation of cracks as well as the performance degradation. 展开更多
关键词 LITHIUM-ION BATTERY OVER-DISCHARGE Phase transition CATHODE operando x-ray DIFFRACTION
下载PDF
Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X-ray Absorption Spectroscopic Characterization 被引量:5
11
作者 Lujie Jia Jian Wang +16 位作者 Shuaiyang Ren Guoxi Ren Xiang Jin Licheng Kao Xuefei Feng Feipeng Yang Qi Wang Ludi Pan Qingtian Li Yi-sheng Liu Yang Wu Gao Liu Jun Feng Shoushan Fan Yifan Ye Jinghua Guo Yuegang Zhang 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期222-228,共7页
The polysulfides shuttle effect represents a great challenge in achieving high capacity and long lifespan of lithium/sulfur(Li/S)cells.A comprehensive understanding of the shuttle-related sulfur speciation and diffusi... The polysulfides shuttle effect represents a great challenge in achieving high capacity and long lifespan of lithium/sulfur(Li/S)cells.A comprehensive understanding of the shuttle-related sulfur speciation and diffusion process is vital for addressing this issue.Herein,we employed in situ/operando X-ray absorption spectroscopy(XAS)to trace the migration of polysulfides across the Li/S cells by precisely monitoring the sulfur chemical speciation at the cathodic electrolyte-separator and electrolyte-anode interfaces,respectively,in a real-time condition.After we adopted a shuttle-suppressing strategy by introducing an electrocatalytic layer of twinborn bismuth sulfide/bismuth oxide nanoclusters in a carbon matrix(BSOC),we found the Li/S cell showed greatly improved sulfur utilization and longer life span.The operando S Kedge XAS results revealed that the BSOC modification was bi-functional:trapping polysulfides and catalyzing conversion of sulfur species simultaneously.We elucidated that the polysulfide trapping-and-catalyzing effect of the BSOC electrocatalytic layer resulted in an effective lithium anode protection.Our results could offer potential stratagem for designing more advanced Li/S cells. 展开更多
关键词 in situ/operando lithium/sulfur cell shuttle effect sulfur speciation x-ray absorption spectroscopy
下载PDF
In Situ/Operando(Soft) X-ray Spectroscopy Study of Beyond Lithium-ion Batteries 被引量:1
12
作者 Feipeng Yang Xuefei Feng +4 位作者 Yi-Sheng Liu Li Cheng Kao Per-Anders Glans Wanli Yang Jinghua Guo 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期139-157,共19页
The lightweight,rechargeable lithium-ion battery is one of the dominant energy storage devices globally in portable electronics due to its high energy density,no memory effect,wide operating voltage,lightweight,and go... The lightweight,rechargeable lithium-ion battery is one of the dominant energy storage devices globally in portable electronics due to its high energy density,no memory effect,wide operating voltage,lightweight,and good charge efficiency.However,due to safety concerns,the depletion of lithium reserves,and the corresponding increase of cost,an alternative battery system becomes more and more desirable.To develop alternative battery systems with low cost and high material abundance,for example,sodium,magnesium,zinc,and calcium,it is important to understand the chemical and electronic structure of materials.Soft X-ray spectroscopy,for example,X-ray absorption spectroscopy(XAS),X-ray emission spectroscopy(XES),and resonant inelastic soft X-ray scattering(RIXS),is an element-specific technique with sensitivity to the local chemical environment and structural order of the element of interest.Modern soft X-ray systems enable operando experiments that can be applied to amorphous and crystalline samples,making it a powerful tool for studying the electronic and structural changes in electrode and electrolyte species.In this article,the application of in situ/operando(soft)X-ray spectroscopy in beyond lithium-ion batteries is reviewed to demonstrate how such spectroscopic characterizations could facilitate the interpretation of interfacial phenomena under in situ/operando condition and subsequent development of the beyond lithium-ion batteries. 展开更多
关键词 (soft)x-ray spectroscopy beyond lithium-ion battery in situ/operando interface
下载PDF
Water Quality Monitoring of the Bezerra River (Cascavel, Brazil) Using SR-TXRF Technique
13
作者 Phallcha Luízar Obregón Fernando Rodolfo Espinoza-Quinones Aparecido Nivaldo Módenes 《Journal of Chemistry and Chemical Engineering》 2014年第6期587-595,共9页
The present study aims to monitor and assess the water quality of the Bezerra River located in the Western Brazilian Parana state. For the monitoring of river waters, six samplings were established per month during on... The present study aims to monitor and assess the water quality of the Bezerra River located in the Western Brazilian Parana state. For the monitoring of river waters, six samplings were established per month during one year. As indicators of the water quality, physico-chemical parameters such as water temperature, pH, turbidity, dissolved oxygen and COD (chemical oxygen demand) were chosen, as well as trace and majority element concentrations. It is noteworthy that the mean annual values of conductivity, turbidity and COD have progressively increased along the river with maximum values after the Cascavel western sewage treatment plant. Only 13 elements were found in the six collection points, but the metallic elements Cr, Mn, Fe, Cu and Zn have shown concentrations above the maximum limits recommended by Brazilian environmental legislation, suggesting the presence of highly polluting anthropogenic sources. Correlation analyses were used to determine the spatio-variability of water quality variables. The six collection sites were grouped into two clusters, with the element composition in the first cluster (sites 1, 2 and 6) being due to strong anthropogenic activities. The study of the Bezerra River water quality could help to develop municipal environmental policies and help with the management of water conservation in the Bezerra River basin. 展开更多
关键词 River water pollution physico-chemical parameters SR-TXRF (synchrotron radiation total reflection x-ray fluorescence) technique element concentrations statistical analysis.
下载PDF
High-rate electrochemical H_(2)O_(2) production over multimetallic atom catalysts under acidic–neutral conditions 被引量:1
14
作者 Yueyu Tong Jiaxin Liu +5 位作者 Bing-Jian Su Jenh-Yih Juang Feng Hou Lichang Yin Shi Xue Dou Ji Liang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期44-62,共19页
Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show... Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show the unique capability of high selectivity toward 2e−ORR against the 4e−one.The extremely low surface density of the single-atom sites and the inflexibility in manipulating their geometric/electronic configurations,however,compromise the H_(2)O_(2) yield and impede further performance enhancement.Herein,we construct a family of multiatom catalysts(MACs),on which two or three single atoms are closely coordinated to form high-density active sites that are versatile in their atomic configurations for optimal adsorption of essential*OOH species.Among them,the Cox–Ni MAC presents excellent electrocatalytic performance for 2e−ORR,in terms of its exceptionally high H_(2)O_(2) yield in acidic electrolytes(28.96 mol L^(−1) gcat.^(−1) h^(−1))and high selectivity under acidic to neutral conditions in a wide potential region(>80%,0–0.7 V).Operando X-ray absorption and density functional theory analyses jointly unveil its unique trimetallic Co2NiN8 configuration,which efficiently induces an appropriate Ni–d orbital filling and modulates the*OOH adsorption,together boosting the electrocatalytic 2e−ORR capability.This work thus provides a new MAC strategy for tuning the geometric/electronic structure of active sites for 2e−ORR and other potential electrochemical processes. 展开更多
关键词 hydrogen peroxide production multiatom catalysts operando x-ray adsorption spectrum reaction mechanism tendency structure-property relation
下载PDF
Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis
15
作者 Jingchen Na Hongmei Yu +7 位作者 Senyuan Jia Jun Chi Kaiqiu Lv Tongzhou Li Yun Zhao Yutong Zhao Haitao Zhang Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期370-382,共13页
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par... Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry. 展开更多
关键词 Direct seawater electrolysis Anion exchange membrane water ELECTROLYSIS Oxygen evolution reaction Oxygen vacancies operando electrochemistry techniques
下载PDF
Simulations and software development for the Hard X-ray Imager onboard ASO-S 被引量:7
16
作者 Yang Su Wei Liu +13 位作者 You-Ping Li Zhe Zhang Gordon JHurford Wei Chen Yu Huang Zhen-Tong Li Xian-Kai Jiang Hao-Xiang Wang Fan-Xiao-Yu Xia Chang-Xue Chen Wen-Hui Yu Fu Yu Jian Wu Wei-Qun Gan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第11期93-102,共10页
China’s first solar mission,the Advanced Space-based Solar Observatory(ASO-S),is now changing from Phase B to Phase C.Its main scientific objectives are summarized as’1M2B’,namely magnetic field and two types of bu... China’s first solar mission,the Advanced Space-based Solar Observatory(ASO-S),is now changing from Phase B to Phase C.Its main scientific objectives are summarized as’1M2B’,namely magnetic field and two types of bursts(solar flares and coronal mass ejections).Among the three scientific payloads,Hard X-ray Imager(HXI)observes images and spectra of X-ray bursts in solar flares.In this paper,we briefly report on the progresses made by the HXI science team(data and software team)during the design phase(till May 2019).These include simulations of HXI imaging,optimization of HXI grids,development of imaging algorithms,estimation of orbital background,as well as in-orbit calibration plan.These efforts provided guidance for the engineering,improved HXI’s imaging capability and reduced the cost of the instrument. 展开更多
关键词 techniqueS x-ray imaging-techniques simulation SUN x-rays-Sun FLARES
下载PDF
Hard X-ray Imager (HXI) onboard the ASO-S mission 被引量:9
17
作者 Zhe Zhang Deng-Yi Chen +29 位作者 Jian Wu Jin Chang Yi-Ming Hu Yang Su Yan Zhang Jian-Ping Wang Yao-Ming Liang Tao Ma Jian-Hua Guo Ming-Sheng Cai Yong-Qiang Zhang Yong-Yi Huang Xiao-Yan Peng Zong-Bin Tang Xuan Zhao Hong-He Zhou Lian-Guo Wang Jing-Xing Song Miao Ma Guang-Zhou Xu Jian-Feng Yang Di Lu Ying-Hong He Jin-You Tao Xiao-Long Ma Bao-Gang Lv Yan-Ping Bai Cai-Xia Cao Yu Huang Wei-Qun Gan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第11期49-62,共14页
Hard X-ray Imager(HXI)is one of the three scientific instruments onboard the Advanced Spacebased Solar Observatory(ASO-S)mission,which is proposed for the 25th solar maximum by the Chinese solar community.HXI is desig... Hard X-ray Imager(HXI)is one of the three scientific instruments onboard the Advanced Spacebased Solar Observatory(ASO-S)mission,which is proposed for the 25th solar maximum by the Chinese solar community.HXI is designed to investigate the non-thermal high-energy electrons accelerated in solar flares by providing images of solar flaring regions in the energy range from 30 keV to 200 keV.The imaging principle of HXI is based on spatially modulated Fourier synthesis and utilizes about 91 sets of bi-grid sub-collimators and corresponding LaBr3 detectors to obtain Fourier components with a spatial resolution of about 3 arcsec and a time resolution better than 0.5 s.An engineering prototype has been developed and tested to verify the feasibility of design.In this paper,we present background,instrument design and the development and test status of the prototype. 展开更多
关键词 instrumentation:detectors space vehicles:instruments Sun:x-ray techniques:imaging spectroscopy
下载PDF
Laser-produced plasma helium-like titanium Kα x-ray source and its application to Rayleigh-Taylor instability study 被引量:1
18
作者 王瑞荣 陈伟民 +2 位作者 王伟 董佳钦 肖沙里 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期362-368,共7页
Several experiments are performed on the ShenGuang-Ⅱ laser facility to investigate an x-ray source and test radiography concepts. X-ray lines emitted from laser-produced plasmas are the most practical means of genera... Several experiments are performed on the ShenGuang-Ⅱ laser facility to investigate an x-ray source and test radiography concepts. X-ray lines emitted from laser-produced plasmas are the most practical means of generating these high intensity sources. By using a time-integrated space-resolved keV spectroscope and pinhole camera, potential helium-like titanium Kα x-ray backlighting (radiography) line source is studied as a function of laser wavelength, ratio of pre-pulse intensity to main pulse intensity, and laser intensity (from 7.25 to ~ 11.3 × 10^15 W/cm2). One-dimensional radiography using a grid consisting of 5 #m Au wires on 16 μm period and the pinhole-assisted point projection is tested. The measurements show that the size of the helium-like titanium Ka source from a simple foil target is larger than 100 ~m, and relative x-ray line emission conversion efficiency ~x from the incident laser light energy to helium- like titanium K-shell spectrum increases significantly with pre-pulse intensity increasing, increases rapidly with laser wavelength decreasing, and increases moderately with main laser intensity increasing. It is also found that a gold gird foils can reach an imaging resolution better than 5-μm featured with high contrast. It is further demonstrated that the pinhole-assisted point projection at such a level will be a novel two-dimensional imaging diagnostic technique for inertial confinement fusion experiments. 展开更多
关键词 x-ray source plasma diagnostic techniques x-ray spectra
下载PDF
In operando study of orthorhombic V_(2)O_(5) as positive electrode materials for K-ion batteries
19
作者 Qiang Fu Angelina Sarapulova +7 位作者 Lihua Zhu Georgian Melinte Alexander Missyul Edmund Welter Xianlin Luo Michael Knapp Helmut Ehrenberg Sonia Dsoke 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期627-636,I0015,共11页
Herein, the electrochemical performance and the mechanism of potassium insertion/deinsertion in orthorhombic V_(2)O_(5) nanoparticles are studied. The V2O5 electrode displays an initial potassiation/depotassiation cap... Herein, the electrochemical performance and the mechanism of potassium insertion/deinsertion in orthorhombic V_(2)O_(5) nanoparticles are studied. The V2O5 electrode displays an initial potassiation/depotassiation capacity of 200 mAh g^(−1)/217 mAh g^(−1) in the voltage range 1.5–4.0 V vs. K^(+)/K at C/12 rate, suggesting fast kinetics for potassium insertion/deinsertion. However, the capacity quickly fades during cycling, reaching 54 mAh g^(−1) at the 31st cycle. Afterwards, the capacity slowly increases up to 80 mAh g^(−1) at the 200th cycle. The storage mechanism upon K ions insertion into V2O5 is elucidated. In operando synchrotron diffraction reveals that V_(2)O_(5) first undergoes a solid solution to form K_(0.6)V_(2)O_(5) phase and then, upon further K ions insertion, it reveals coexistence of a solid solution and a two-phase reaction. During K ions deinsertion, the coexistence of solid solution and the two-phase reaction is identified together with an irreversible process. In operando XAS confirms the reduction/oxidation of vanadium during the K insertion/extraction with some irreversible contributions. This is consistent with the results obtained from synchrotron diffraction, ex situ Raman, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Moreover, ex situ XPS confirms the “cathode electrolyte interphase” (CEI) formation on the electrode and the decomposition of CEI film during cycling. 展开更多
关键词 Orthorhombic V_(2)O_(5) In operando synchrotron diffraction In operando x-ray absorption spectroscopy K-ion batteries
下载PDF
The Electron Temperature Estimation Using Soft X-Ray Imaging in HT-7 Tokamak
20
作者 甄香君 胡立群 +5 位作者 万宝年 陈忠勇 石跃江 林士耀 丁永华 周立武 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期147-150,共4页
In order to estimate the electron temperature soft x-ray imaging diagnostics using a double filter technique has been developed in the HT-7 tokamak. The chosen thicknesses of the Be foil are 12.5 μm and 70 μm, respe... In order to estimate the electron temperature soft x-ray imaging diagnostics using a double filter technique has been developed in the HT-7 tokamak. The chosen thicknesses of the Be foil are 12.5 μm and 70 μm, respectively. In this article both the main design of the diagnostic configuration and the method to estimate the electron temperature are presented. The results agree with those estimated from the soft x-ray pulse height analyzer (PHA). The main causes of systematic error have also been investigated. 展开更多
关键词 different foils technique soft x-ray electron temperature tokamak plasma
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部