期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Unveiling the role of Ni in Ru-Ni oxide for oxygen evolution: Lattice oxygen participation enhanced by structural distortion
1
作者 Young-Jin Ko Man Ho Han +6 位作者 Chulwan Lim Seung-Ho Yu Chang Hyuck Choi Byoung Koun Min Jae-Young Choi Woong Hee Lee Hyung-Suk Oh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期54-61,I0003,共9页
Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru ... Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru NiO_(x)electrode fabricated via a modified dip coating method exhibited excellent OER performance in acidic media,and neutral media for CO_(2)reduction reaction.We combined in-situ/operando X-ray absorption near-edge structure and on-line inductively coupled plasma mass spectrometry studies to unveil the role of the Ni introduced in the Ru oxide.We propose that the Ni not only transforms the electronic structure of the Ru oxide,but also produces a large number of oxygen vacancies by distorting the oxygen lattice structure at low overpotentials,increasing the participation of lattice oxygen for OER.This work demonstrates the real behavior of bimetallic oxide materials under applied potentials and provides new insights into the development of efficient electrocatalysts. 展开更多
关键词 Oxygen evolution reaction Ru electrode Ni electrode Oxygen vacancies In-situ/operando studies
下载PDF
Characterization of porous cobalt hexacyanoferrate and activated carbon electrodes under dynamic polarization conditions in a sodium-ion pseudocapacitor 被引量:1
2
作者 Bruno Morandi Pires Willian Goncalves Nunes +5 位作者 Bruno Guilherme Freitas Francisca Elenice Rodrigues Oliveira Vera Katic Cristiane Barbieri Rodella Leonardo Morais Da Silva Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期53-62,共10页
We report here the activated carbon and cobalt hexacyanoferrate composite,which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na_(2)SO_(4) aqueous electrolyte.This novel materia... We report here the activated carbon and cobalt hexacyanoferrate composite,which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na_(2)SO_(4) aqueous electrolyte.This novel material combines high specific surface area and electrochemical stability of activated carbon with the redox properties of cobalt hexacyanoferrate,resulting in maximum specific capacitance of 329 F g^(-1) with large voltage working window of 2.0 V.Electrochemical studies indicated that cobalt hexacyanoferrate introduces important pseudocapacitive properties accounting for the overall charge-storage process,especially when I<0.5 A g^(-1).At lower gravimetric currents(e.g.,0.05 A g^(-1))and up to 1.0 V,the presence of cobalt hexacyanoferrate improves the specific energy for more than 300%.In addition,to better understanding the energy storage process we also provided a careful investigation of the electrode materials under dynamic polarization conditions using the in situ Raman spectroscopy and synchrotron light Xray diffraction techniques.Interesting complementary findings were obtained in these studies.We believe that this novel electrode material is promising for applications regarding the energy-storage process in pseudocapacitors with long lifespan properties. 展开更多
关键词 operando studies RAMAN XRD synchrotron light Cobalt hexacyanoferrate Activated carbon High specific capacitance
下载PDF
Pd3 cluster catalysis: Compelling evidence from in operando spectroscopic, kinetic, and density functional theory studies 被引量:2
3
作者 Chunlin Lv Hao Cheng +8 位作者 Wei He Muhammad Ishaq Ali Shah Congqiao Xu Xiangjian Meng Lei Jiao Shiqiang Wei Jun Li Lei Liu Yadong Li 《Nano Research》 SCIE EI CAS CSCD 2016年第9期2544-2550,共7页
Identification of metal cluster catalysis is a topic that is being investigated since a long time. Here, we report a Pd3 metal cluster catalytic reaction investigated by means of operando studies. We discovered that a... Identification of metal cluster catalysis is a topic that is being investigated since a long time. Here, we report a Pd3 metal cluster catalytic reaction investigated by means of operando studies. We discovered that atomically defined tri-nuclear palladium (Pd3) is a surprisingly active catalyst for the cycloisomerization of 2-phenylethynylaniline. Operando1H NMR spectroscopy and X-ray extended absorption fine structure (EXAFS) measurements have indicated that the structural integrity of such a catalyst remains intact throughout the reaction, which has also been confirmed by an ex situ X-ray photoelectron spectroscopy (XPS) study and catalyst recycling experiments. Kinetic data derived from operando IR spectroscopy measurements have shown that Pd3is the active catalytic species. Density functional theory calculations have revealed a reaction pathway consistent with the kinetic data, further supported by NMR titration and X-ray crystal structure studies. Overall, the present study presents a clear example of metal cluster catalysis. [Figure not available: see fulltext.] © 2016, Tsinghua University Press and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 metal cluster catalysis operando studies active species CYCLOISOMERIZATION PALLADIUM
全文增补中
Raman probing carbon&aqueous electrolytes interfaces and molecular dynamics simulations towards understanding electrochemical properties under polarization conditions in supercapacitors 被引量:1
4
作者 Rafael Vicentini Leonardo M.Da Silva +7 位作者 Débora V.Franco Willian G.Nunes Juliane Fiates Gustavo Doubek Luís F.M.Franco Renato G.Freitas Cristiano Fantini Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期279-292,共14页
Raman probing of carbon electrode and electrolyte under dynamic conditions is performed here using different aqueous electrolytes to elucidate the fundamental events occurring in electrochemical supercapacitor during ... Raman probing of carbon electrode and electrolyte under dynamic conditions is performed here using different aqueous electrolytes to elucidate the fundamental events occurring in electrochemical supercapacitor during charge–discharge processes.The areal capacitance ranges from 1.54 to 2.31μF cm^(-2)μm and it is determined using different techniques.These findings indicate that the Helmholtz capacitance governs the overall charge-storage process instead of the space charge(quantum)capacitance commonly verified for HOPG electrodes in the range of~3 to 7μF cm^(-2).Molecular dynamics simulations are employed to elucidate the origin of the reversible Raman spectral changes during the charge–discharge processes.A correlation is verified between the reversible Raman shift and the surface excesses of the different ionic species.A theoretical framework is presented to relate the effect of the applied potential on the Raman shift and its correlation with the surface ionic charge.It is proposed that the Raman shift is governed by the interaction of solvated cations with graphite promoted by polarization conditions.It is the first time that a comparative study on different aqueous electrolyte p H and cation ion size has been performed tracking the Raman spectra change under dynamic polarization conditions and contrasting with comprehensive electrochemistry and dynamic molecular simulations studies.This study shines lights onto the charge-storage mechanism with evidence of Kohn anomaly reduction in the carbon electrode during the reversible adsorption/desorption and insertion/extraction of ionic species. 展开更多
关键词 Defect reorganization in graphite Surface excess of charge operando Raman studies Electrical double-layer capacitors
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部