We present two protocols for the controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirect...We present two protocols for the controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirectional quantum state teleportaion (BQST) with high-dimensional systems is considered. Then, instead of using the BQST method, a protocol for controlled remote implementation of partially unknown operations belonging to some restricted sets in high-dimensional systems is proposed. It is shown that, in these protocols, if and only if the controller would like to help the sender with the remote operations, the controlled remote implementation of quantum operations for high-dimensional systems can be completed.展开更多
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve...Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.展开更多
Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical mode...Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in turn, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been success- fully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.展开更多
On the basis of the first jig separation stage, the relational mathematical model related to ash content and the coutent of coal gangue with a density less than 1. 8 g/cm3 is established. With this model, the discharg...On the basis of the first jig separation stage, the relational mathematical model related to ash content and the coutent of coal gangue with a density less than 1. 8 g/cm3 is established. With this model, the discharge rate of reruse can be adjusted automatically and exactly by the conveutional PI regulator.The control stratedes for water capacity, air pressure, and feed capacity of the jig are introduced.Combined with the Expert system technology, jig expert system (JEP) is developed.展开更多
This paper describes the control software together with the operational hardware, which successfully realizes the operation of a new fully programmable imaging system with high spatial and temporal resolutions on the ...This paper describes the control software together with the operational hardware, which successfully realizes the operation of a new fully programmable imaging system with high spatial and temporal resolutions on the KT5D magnetic torus, for observing the visible l ight emission from the plasma discharge.展开更多
A Thomson scattering diagnostic system is under construction at the Joint Texas Experimental Tokamak(J-TEXT). A 1064 nm Nd:YAG laser with 50 Hz repetition rate is used as the laser source. We have used a software f...A Thomson scattering diagnostic system is under construction at the Joint Texas Experimental Tokamak(J-TEXT). A 1064 nm Nd:YAG laser with 50 Hz repetition rate is used as the laser source. We have used a software for careful and precise control of the laser through serial communication. A time sequence operating system has been developed to synchronize the laser control and data acquisition system with the central control system(CSS). The system operates commands from the CSS of J-TEXT and generates triggers for the laser and data acquisition system in the proper sequence. It also measures an asynchronous time value that is needed for accurate time stamping. All functions are served by a field-programmable gate array development platform that is suitable for high-speed data and signal processing applications.Several embedded peripherals, including Ethernet and USB 2.0, provide communication with the CSS and the server.展开更多
The contradiction between the increasing material demand and resource,is the country has faced problems,to better solve the material demand and the contradiction between the environment and resources,is applied to the...The contradiction between the increasing material demand and resource,is the country has faced problems,to better solve the material demand and the contradiction between the environment and resources,is applied to the development of new energy,new energy,not only can alleviate people and resources,environment and resources,the contradiction between people and the environment,also can promote the sustainable development of world economy,HVAC technology has emerged a new generation of energysaving technology,HVAC has the characteristics of low consumption,low pollution,is a development of technology,to be promoted for environmentfriendly,resource-conserving society has an important role in promoting.This paper focuses on the HVAC technology,water source heat pump system operation control and energy consumption optimization,for the relevant personnel reference.展开更多
Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, ...Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, we show that previous optical schemes may be extended to general hybrid systems if unknown operations are provided by optical instruments. Moreover, a probabilistic scheme is proposed when the unknown operation may be performed on the subspaces of ancillary high-dimensional systems. Furthermore, the unknown operations conditioned on the multi-control system may be reduced to the case with a control system using additional linear circuit complexity. The new schemes may be more flexible for different systems or hybrid systems.展开更多
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operat...Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.展开更多
With consideration that the controller parameters may vary from the designed value when the controller is realized, based on Lyapunov stability theory, a design method of nonfragile guaranteed cost control for a class...With consideration that the controller parameters may vary from the designed value when the controller is realized, based on Lyapunov stability theory, a design method of nonfragile guaranteed cost control for a class of Delta operator-formulated uncertain time-delay systems is studied. A sufficient condition for the existence of the nonfragile guaranteed cost controller is given. A numeric example is then given to illustrate the effectiveness and the feasibility of the designed method. The results show that even if the parameters of the designed controller are of variations, the closed-loop system is still asymptotically stable and the super value of the cost function can also be obtained, while the closed-loop system will be unstable if the variations of the controller parameters are not considered when the controller is designed. The nonfragile guaranteed cost controller derived from the traditional shift operator method may cause the closed-loop system to be unstable, while the nonfragile guaranteed cost controller based on Delta operator method can avoid the unstable problem of the closed-loop system.展开更多
The control architectures of "SY-2" Remote Operated Vehicle (ROV) are introduced. Both hardware architecture and software architecture are discussed. PC/104 embedded computer is used to control equipment for colle...The control architectures of "SY-2" Remote Operated Vehicle (ROV) are introduced. Both hardware architecture and software architecture are discussed. PC/104 embedded computer is used to control equipment for collecting sensor data and sending control commands. PC/104 embedded computer is integrated with A/D, D/A, 8 serial ports card and power supply unit. The surface computer is a X86PC. They transfer data through a fiber line. For software, real-time OS VxWorks is embedded in PC/104. A/D, D/A and serial ports operation are based on VxWorks OS, which increase the real-time quality of control system. Surface computer is the center of motion control and data processing. It is communicated with underwater PC/104 by socket. The whole system has been tested both on land and in tank.展开更多
This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of gua...This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.展开更多
Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To...Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p...Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.展开更多
In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is c...In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is considered respectively. In detail, by using operator based robust right coprime factorization approach, the control system design structures including feedforward and feedback controllers for both SISO and MIMO nonlinear uncertain systems are given, respectively.In which, the controller design includes the information of PI hysteresis and its inverse, and some sufficient conditions for the controllers in both SISO and MIMO systems should be satisfied are also derived respectively. Based on the proposed conditions, influence from hysteresis is rejected, the systems are robustly stable and output tracking performance can be realized.Finally, the effectiveness of the proposed method is confirmed by numerical simulations.展开更多
An industrial robot with a six-axis force/torque sensor is usually used to produce a zero-gravity environment for testing space robotic operations.However,using traditional force control methods,such as admittance con...An industrial robot with a six-axis force/torque sensor is usually used to produce a zero-gravity environment for testing space robotic operations.However,using traditional force control methods,such as admittance control,causes position-controlled industrial robots to undergo from force divergence owing to intrinsic time delay.In this paper,a new force control method is proposed to eliminate the force divergence.A hardware-in-the-loop(HIL)simulator with an industrial robot is first presented.The free-floating satellite dynamics and the motion mapping from the satellites to simulator are both established.Thus,the effects of measurement delay and dynamic response delay on contact velocity and force are investigated.After that,a real-time estimation method for contact stiffness and damping is proposed based on the adaptive Kalman filter.The measurement delay is compensated by a phase lead model.Moreover,the identified contact parameters are adopted to modify contact forces,and thus the dynamics response delay can be compensated for.Finally,a co-simulation and experiments were conducted to verify the force control method.The results show that contact stiffness and damping could be identified exactly and that the simulation divergence could be prevented.This paper proposes an active compliance control method that can deal with force constrained tasks of a position-controlled robot in unknown environments.展开更多
In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First,...In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First, the density matrix interested in quantum system is transferred to vector formation.Then, in order to obtain a controller with higher accuracy and faster convergence rate, a Lyapunov function based on the matrix logarithm function is designed. After that, a procedure for the controller design is derived based on the Lyapunov stability theorem. Finally, the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate. The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11074088)
文摘We present two protocols for the controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirectional quantum state teleportaion (BQST) with high-dimensional systems is considered. Then, instead of using the BQST method, a protocol for controlled remote implementation of partially unknown operations belonging to some restricted sets in high-dimensional systems is proposed. It is shown that, in these protocols, if and only if the controller would like to help the sender with the remote operations, the controlled remote implementation of quantum operations for high-dimensional systems can be completed.
基金supported by the Science and Technology Project of State Grid Shanxi Electric Power Research Institute:Research on Data-Driven New Power System Operation Simulation and Multi Agent Control Strategy(52053022000F).
文摘Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.
文摘Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in turn, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been success- fully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.
文摘On the basis of the first jig separation stage, the relational mathematical model related to ash content and the coutent of coal gangue with a density less than 1. 8 g/cm3 is established. With this model, the discharge rate of reruse can be adjusted automatically and exactly by the conveutional PI regulator.The control stratedes for water capacity, air pressure, and feed capacity of the jig are introduced.Combined with the Expert system technology, jig expert system (JEP) is developed.
基金The project supported by Chinese National Science Foundation (Nos. 10335060, 10235010) and Creative Project Grants of ChineseAcademy of Science
文摘This paper describes the control software together with the operational hardware, which successfully realizes the operation of a new fully programmable imaging system with high spatial and temporal resolutions on the KT5D magnetic torus, for observing the visible l ight emission from the plasma discharge.
基金supported by the National Magnetic Confinement Fusion Science Program of China under Contract No.2015GB111001by National Natural Science Foundation of China(Grant No.11575067)
文摘A Thomson scattering diagnostic system is under construction at the Joint Texas Experimental Tokamak(J-TEXT). A 1064 nm Nd:YAG laser with 50 Hz repetition rate is used as the laser source. We have used a software for careful and precise control of the laser through serial communication. A time sequence operating system has been developed to synchronize the laser control and data acquisition system with the central control system(CSS). The system operates commands from the CSS of J-TEXT and generates triggers for the laser and data acquisition system in the proper sequence. It also measures an asynchronous time value that is needed for accurate time stamping. All functions are served by a field-programmable gate array development platform that is suitable for high-speed data and signal processing applications.Several embedded peripherals, including Ethernet and USB 2.0, provide communication with the CSS and the server.
文摘The contradiction between the increasing material demand and resource,is the country has faced problems,to better solve the material demand and the contradiction between the environment and resources,is applied to the development of new energy,new energy,not only can alleviate people and resources,environment and resources,the contradiction between people and the environment,also can promote the sustainable development of world economy,HVAC technology has emerged a new generation of energysaving technology,HVAC has the characteristics of low consumption,low pollution,is a development of technology,to be promoted for environmentfriendly,resource-conserving society has an important role in promoting.This paper focuses on the HVAC technology,water source heat pump system operation control and energy consumption optimization,for the relevant personnel reference.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61303039 and 61201253)Chunying Fellowship,and Fundamental Research Funds for the Central Universities,China(Grant No.2682014CX095)
文摘Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, we show that previous optical schemes may be extended to general hybrid systems if unknown operations are provided by optical instruments. Moreover, a probabilistic scheme is proposed when the unknown operation may be performed on the subspaces of ancillary high-dimensional systems. Furthermore, the unknown operations conditioned on the multi-control system may be reduced to the case with a control system using additional linear circuit complexity. The new schemes may be more flexible for different systems or hybrid systems.
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)the Science Foundation of China University of Petroleum(KYJJ2012-05-28)
文摘Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.
基金supported by the Natural Science Foundation of Fujian Province (No.2008J04016)
文摘With consideration that the controller parameters may vary from the designed value when the controller is realized, based on Lyapunov stability theory, a design method of nonfragile guaranteed cost control for a class of Delta operator-formulated uncertain time-delay systems is studied. A sufficient condition for the existence of the nonfragile guaranteed cost controller is given. A numeric example is then given to illustrate the effectiveness and the feasibility of the designed method. The results show that even if the parameters of the designed controller are of variations, the closed-loop system is still asymptotically stable and the super value of the cost function can also be obtained, while the closed-loop system will be unstable if the variations of the controller parameters are not considered when the controller is designed. The nonfragile guaranteed cost controller derived from the traditional shift operator method may cause the closed-loop system to be unstable, while the nonfragile guaranteed cost controller based on Delta operator method can avoid the unstable problem of the closed-loop system.
基金supported by the National Natural Science Foundation of China(Grant No.50909025/E091002)the Fundamental Research Foundation of Harbin Engineering University(Grant No.HEUFT08001)+1 种基金the China Postdoctoral Science Foundation(Grant No.20080440838)the Heilongjiang Province Postdoctoral Foun-dation
文摘The control architectures of "SY-2" Remote Operated Vehicle (ROV) are introduced. Both hardware architecture and software architecture are discussed. PC/104 embedded computer is used to control equipment for collecting sensor data and sending control commands. PC/104 embedded computer is integrated with A/D, D/A, 8 serial ports card and power supply unit. The surface computer is a X86PC. They transfer data through a fiber line. For software, real-time OS VxWorks is embedded in PC/104. A/D, D/A and serial ports operation are based on VxWorks OS, which increase the real-time quality of control system. Surface computer is the center of motion control and data processing. It is communicated with underwater PC/104 by socket. The whole system has been tested both on land and in tank.
基金supported jointly by the National Natural Science Foundation of China(61703033,61790573)Beijing Natural Science Foundation(4192046)+1 种基金Fundamental Research Funds for Central Universities(2018JBZ002)State Key Laboratory of Rail Traffic Control and Safety(RCS2018ZT013),Beijing Jiaotong University
文摘This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.
基金Project(K117K06225)supported by JSPS KAKENHI,Japan
文摘Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
基金supported in part by the National Natural Science Foundation of China(51875261)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX21_3331)+1 种基金the Faculty of Agricultural Equipment of Jiangsu University(NZXB20210103)。
文摘Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.
基金supported by the National Natural Science Foundation of China(61203229)
文摘In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is considered respectively. In detail, by using operator based robust right coprime factorization approach, the control system design structures including feedforward and feedback controllers for both SISO and MIMO nonlinear uncertain systems are given, respectively.In which, the controller design includes the information of PI hysteresis and its inverse, and some sufficient conditions for the controllers in both SISO and MIMO systems should be satisfied are also derived respectively. Based on the proposed conditions, influence from hysteresis is rejected, the systems are robustly stable and output tracking performance can be realized.Finally, the effectiveness of the proposed method is confirmed by numerical simulations.
基金National Natural Science Foundation of China(Grant No.52175022)State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSVZD2021-06)Shanghai R&D Public Service Platform Project of China(Grant No.19DZ2291400).
文摘An industrial robot with a six-axis force/torque sensor is usually used to produce a zero-gravity environment for testing space robotic operations.However,using traditional force control methods,such as admittance control,causes position-controlled industrial robots to undergo from force divergence owing to intrinsic time delay.In this paper,a new force control method is proposed to eliminate the force divergence.A hardware-in-the-loop(HIL)simulator with an industrial robot is first presented.The free-floating satellite dynamics and the motion mapping from the satellites to simulator are both established.Thus,the effects of measurement delay and dynamic response delay on contact velocity and force are investigated.After that,a real-time estimation method for contact stiffness and damping is proposed based on the adaptive Kalman filter.The measurement delay is compensated by a phase lead model.Moreover,the identified contact parameters are adopted to modify contact forces,and thus the dynamics response delay can be compensated for.Finally,a co-simulation and experiments were conducted to verify the force control method.The results show that contact stiffness and damping could be identified exactly and that the simulation divergence could be prevented.This paper proposes an active compliance control method that can deal with force constrained tasks of a position-controlled robot in unknown environments.
基金supported by National Natural Science Foundation of China(61573330)Chinese Academy of Sciences(CAS)the World Academy of Sciences(TWAS)
文摘In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First, the density matrix interested in quantum system is transferred to vector formation.Then, in order to obtain a controller with higher accuracy and faster convergence rate, a Lyapunov function based on the matrix logarithm function is designed. After that, a procedure for the controller design is derived based on the Lyapunov stability theorem. Finally, the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate. The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.