Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit...Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.展开更多
Vacuum space between Ar atoms in unlighted HCFL lamps is an electric insulator, because vacuum fills up with strong negative electric field from orbital electrons in 3p6 electron shell of Ar atoms. Vacuum space in lig...Vacuum space between Ar atoms in unlighted HCFL lamps is an electric insulator, because vacuum fills up with strong negative electric field from orbital electrons in 3p6 electron shell of Ar atoms. Vacuum space in lighted FL lamps changes to the neutral vacuum that provides a superconductive vacuum for moving electrons at above room temperature. The complications of lighting mechanisms of HCFL lamps for more than 80 years have clearly solved with coexistence of disparate external and internal electric circuits for each half cycle. External electric circuit acts as two roles. One helps for formation of internal electric circuit in Ar gas space by electric field. Other picks up induced voltages from capacitor CFL. HCFL lamp only lights up with moving electrons in internal DC driving circuit. Electrons in HCFL lamp only move from cathode to anode, which respectively have negative and positive potentials against grand (V = 0), and which are formed with volumes of heated corona light (4G) at around W-filament metal electrodes with a help of heated BaO particles. The HCFL lamp that emits thermoelectrons is a false story. Here we have totally revised the fundamentals of the lighting mechanism of the established HCFL lamps for last 80 years.展开更多
Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion.Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with ...Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion.Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with a very wide discharge current range.In this paper,a heater is used to compensate for the temperature drop of the emitter at low current.The self-sustained current can be extended from 0.6 to 0.1 A with a small discharge oscillation and ion energy when the flow rate is constant.This is also beneficial for long-life operation.However,when the discharge current is high(>1 A),heating can cause discharge oscillation,discharge voltage and ion energy to increase,f urther,combined with a rapid decline of pressure inside the cathode and an increase in the temperature in the cathode orifice plate,electron emission in die orifice and outside the orifice increases and the plasma density in the orifice decreases.This leads to a change in the cathode discharge mode.展开更多
The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to w...The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of electric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non-local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive significance to understand the hollow cathode discharge configuration and the hollow cathode effect.展开更多
Recently, information came from Ningde Xiawu, NCM Cathode Material Processing Project was well installed and tested, and was put into operation. Meanwhile, surrounding buildings such as dormitory building A and B,comp...Recently, information came from Ningde Xiawu, NCM Cathode Material Processing Project was well installed and tested, and was put into operation. Meanwhile, surrounding buildings such as dormitory building A and B,comprehensive building, quality inspection station and transformer substation were also completed and put into use.展开更多
Considering the earth powered by intermittent renewable energy in the coming future,solid oxide electrolysis cell(SOEC)will play an indispensable role in efficient energy conversion and storage on demand.The thermolyt...Considering the earth powered by intermittent renewable energy in the coming future,solid oxide electrolysis cell(SOEC)will play an indispensable role in efficient energy conversion and storage on demand.The thermolytic and kinetic merits grant SOEC a bright potential to be directly integrated with electrical grid and downstream chemical synthesis process.Meanwhile,the scientific community are still endeavoring to pursue the SOEC assembled with better materials and operated at a more energy-efficient way.In this review article,at cell level,we focus on the recent development of electrolyte,cathode,anode and buffer layer materials for both steam and CO_(2)electrolysis.On the other hand,we also discuss the next generation SOEC operated with the assistant of other fuels to further reduce the energy consumption and enhance the productivity of the electrolyzer.And stack level,the sealant,interconnect and stack operation strategies are collectively covered.Finally,the challenges and future research direction in SOECs are included.展开更多
基金the financial support from the National Natural Science Foundation of China(51972156,52072378,52102054 and 51927803)the National Key R&D Program of China(2022YFB3803400,2021YFB3800301)+2 种基金the Shenyang Science and Technology Program(22-322-3-19)the Youth Fund of the Education Department of Liaoning Province(LJKQZ20222324)the Outstanding Youth Fund of University of Science and Technology Liaoning(2023YQ11).
文摘Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.
文摘Vacuum space between Ar atoms in unlighted HCFL lamps is an electric insulator, because vacuum fills up with strong negative electric field from orbital electrons in 3p6 electron shell of Ar atoms. Vacuum space in lighted FL lamps changes to the neutral vacuum that provides a superconductive vacuum for moving electrons at above room temperature. The complications of lighting mechanisms of HCFL lamps for more than 80 years have clearly solved with coexistence of disparate external and internal electric circuits for each half cycle. External electric circuit acts as two roles. One helps for formation of internal electric circuit in Ar gas space by electric field. Other picks up induced voltages from capacitor CFL. HCFL lamp only lights up with moving electrons in internal DC driving circuit. Electrons in HCFL lamp only move from cathode to anode, which respectively have negative and positive potentials against grand (V = 0), and which are formed with volumes of heated corona light (4G) at around W-filament metal electrodes with a help of heated BaO particles. The HCFL lamp that emits thermoelectrons is a false story. Here we have totally revised the fundamentals of the lighting mechanism of the established HCFL lamps for last 80 years.
文摘Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion.Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with a very wide discharge current range.In this paper,a heater is used to compensate for the temperature drop of the emitter at low current.The self-sustained current can be extended from 0.6 to 0.1 A with a small discharge oscillation and ion energy when the flow rate is constant.This is also beneficial for long-life operation.However,when the discharge current is high(>1 A),heating can cause discharge oscillation,discharge voltage and ion energy to increase,f urther,combined with a rapid decline of pressure inside the cathode and an increase in the temperature in the cathode orifice plate,electron emission in die orifice and outside the orifice increases and the plasma density in the orifice decreases.This leads to a change in the cathode discharge mode.
文摘The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of electric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non-local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive significance to understand the hollow cathode discharge configuration and the hollow cathode effect.
文摘Recently, information came from Ningde Xiawu, NCM Cathode Material Processing Project was well installed and tested, and was put into operation. Meanwhile, surrounding buildings such as dormitory building A and B,comprehensive building, quality inspection station and transformer substation were also completed and put into use.
基金supported financially by the National Key Research&Development Program of China(No.2018YFE0124700)the National Natural Science Foundation of China(Nos.22272136,22102135,22202041,22172129,52072134,U1910209,51876181 and 51972128)+2 种基金Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM)(No.HRTP-[2022]-23)and Hubei Province(Nos.2021CBA149 and 2021CFA072)the financial support from Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515010069 and 2020A1515110904)the Natural Science Foundation of Fujian Province(No.2021J01212759)。
文摘Considering the earth powered by intermittent renewable energy in the coming future,solid oxide electrolysis cell(SOEC)will play an indispensable role in efficient energy conversion and storage on demand.The thermolytic and kinetic merits grant SOEC a bright potential to be directly integrated with electrical grid and downstream chemical synthesis process.Meanwhile,the scientific community are still endeavoring to pursue the SOEC assembled with better materials and operated at a more energy-efficient way.In this review article,at cell level,we focus on the recent development of electrolyte,cathode,anode and buffer layer materials for both steam and CO_(2)electrolysis.On the other hand,we also discuss the next generation SOEC operated with the assistant of other fuels to further reduce the energy consumption and enhance the productivity of the electrolyzer.And stack level,the sealant,interconnect and stack operation strategies are collectively covered.Finally,the challenges and future research direction in SOECs are included.