期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Improved Adaptive Differential Evolution Algorithm for the Un-Capacitated Facility Location Problem
1
作者 Nan Jiang Huizhen Zhang 《Open Journal of Applied Sciences》 CAS 2023年第5期685-695,共11页
The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the... The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm. 展开更多
关键词 Un-Capacitated Facility Location Problem Differential Evolution Algorithm Adaptive Operator
下载PDF
The algorithm of 3D multi-scale volumetric curvature and its application 被引量:12
2
作者 陈学华 杨威 +2 位作者 贺振华 钟文丽 文晓涛 《Applied Geophysics》 SCIE CSCD 2012年第1期65-72,116,共9页
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W... To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties. 展开更多
关键词 3D multi-scale volumetric curvature adaptive differential operator in wavenumber domain multi-frequency expansion in time-frequency domain fault detection fracture zone data fusion
下载PDF
Layered image inpainting based on image decomposition 被引量:1
3
作者 KEDAR Shrestha 秦川 王朔中 《Journal of Shanghai University(English Edition)》 CAS 2007年第6期580-584,共5页
We propose a layered image inpainting scheme based on image decomposition. The damaged image is first decomposed into three layers: cartoon, edge, and texture. The cartoon and edge layers are repaired using an adapti... We propose a layered image inpainting scheme based on image decomposition. The damaged image is first decomposed into three layers: cartoon, edge, and texture. The cartoon and edge layers are repaired using an adaptive offset operator that can fill-in damaged image blocks while preserving sharpness of edges. The missing information in the texture layer is generated with a texture synthesis method. By using discrete cosine transform (DCT) in image decomposition and trading between resolution and computation complexity in texture synthesis, the processing time is kept at a reasonable level. 展开更多
关键词 image inpainting image decomposition texture synthesis adaptive offset operator.
下载PDF
Composition of Web Services of Multi-Population Adaptive Genetic Algorithm Based on Cosine Improvement 被引量:1
4
作者 Siyuan Meng Chuancheng Zhang 《Journal of Computer and Communications》 2021年第6期109-119,共11页
Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select... Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select the web service composition with the highest comprehensive QoS is a NP hard problem. In this paper, an improved multi population genetic algorithm is proposed. Cosine adaptive operator is added to the algorithm to avoid premature algorithm caused by improper genetic operator and the disadvantage of destroying excellent individuals in later period. Experimental results show that compared with the common genetic algorithm and multi population genetic algorithm, this algorithm has the advantages of shorter time consumption and higher accuracy, and effectively avoids the loss of effective genes in the population. 展开更多
关键词 Web Service Composition Multi-Population Genetic Algorithm QOS Cosine Improved Adaptive Genetic Operator
下载PDF
Research on Resource Scheduling of Cloud Computing Based on Improved Genetic Algorithm 被引量:1
5
作者 Juanzhi Zhang Fuli Xiong Zhongxing Duan 《Journal of Electronic Research and Application》 2020年第2期4-9,共6页
In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completi... In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completion time,a mathematical model of resource scheduling in cloud data center is established.The two-stage resource scheduling optimization simulation is realized by using the conventional genetic algorithm.On the technology of the conventional genetic algorithm,an adaptive transformation operator is designed to improve the crossover and mutation of the genetic algorithm.The experimental results show that the improved genetic algorithm can significantly reduce the total completion time of the task,and has good convergence and global optimization ability. 展开更多
关键词 Cloud computing resource scheduling Genetic algorithms Adaptive improvement operator
下载PDF
An adaptive genetic algorithm for solving bilevel linear programming problem
6
作者 王广民 王先甲 +1 位作者 万仲平 贾世会 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第12期1605-1612,共8页
Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this pr... Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references. 展开更多
关键词 bilevel linear programming genetic algorithm fitness value adaptive operator probabilities crossover and mutation
下载PDF
Learning to select the recombination operator for derivative-free optimization 被引量:1
7
作者 Haotian Zhang Jianyong Sun +1 位作者 Thomas Back Zongben Xu 《Science China Mathematics》 SCIE CSCD 2024年第6期1457-1480,共24页
Extensive studies on selecting recombination operators adaptively,namely,adaptive operator selection(AOS),during the search process of an evolutionary algorithm(EA),have shown that AOS is promising for improving EA... Extensive studies on selecting recombination operators adaptively,namely,adaptive operator selection(AOS),during the search process of an evolutionary algorithm(EA),have shown that AOS is promising for improving EA's performance.A variety of heuristic mechanisms for AOS have been proposed in recent decades,which usually contain two main components:the feature extraction and the policy setting.The feature extraction refers to as extracting relevant features from the information collected during the search process.The policy setting means to set a strategy(or policy)on how to select an operator from a pool of operators based on the extracted feature.Both components are designed by hand in existing studies,which may not be efficient for adapting optimization problems.In this paper,a generalized framework is proposed for learning the components of AOS for one of the main streams of EAs,namely,differential evolution(DE).In the framework,the feature extraction is parameterized as a deep neural network(DNN),while a Dirichlet distribution is considered to be the policy.A reinforcement learning method,named policy gradient,is used to train the DNN.As case studies,the proposed framework is applied to two DEs including the classic DE and a recently-proposed DE,which result in two new algorithms named PG-DE and PG-MPEDE,respectively.Experiments on the Congress of Evolutionary Computation(CEC)2018 test suite show that the proposed new algorithms perform significantly better than their counterparts.Finally,we prove theoretically that the considered classic methods are the special cases of the proposed framework. 展开更多
关键词 evolutionary algorithm differential evolution adaptive operator selection reinforcement learning deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部