In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H...High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.展开更多
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this ...The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas.展开更多
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can...The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.展开更多
Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportation...Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed.展开更多
For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the tur...For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the turnout structure irregularities,and the instability arising from the bridge's flexural deformation lead to a strong coupling effect in the vehicle-turnout-bridge system.This significantly affects both ride comfort and operational safety.For addressing this issue,the present study considered a long-span continuous rigid-frame bridge as an example and established a train-turnout-bridge coupled dynamic model of high-speed railway.Utilizing a selfdeveloped dynamic simulation program,the study analysed the dynamic response characteristics when the train passes through the turnouts on the bridge.It also investigated the influence of different span-to-depth ratios of the bridge on the vehicle dynamic response when the train passes through the main line and branch line of turnouts and then proposed a span-to-depth ratio limit value for a long-span continuous rigid-frame bridge.The research findings suggest that the changes in the span-to-depth ratio have a relatively minor impact on the train’s operational performance but significantly affect the dynamic characteristics of the bridge structure.Based on the findings and a comprehensive assessment of safety indicators,it is advisable to establish a span-to-depth ratio limit of 1/4500 for a long-span continuous rigid-frame bridge.展开更多
Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable c...Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.展开更多
Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer on...Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways.展开更多
The Lanzhou-Urumqi high-speed railway is an important part of the railway network connecting Gansu,Qinghai,and Xinjiang,and it is of far-reaching significance in facilitating China’s western development.An accessibil...The Lanzhou-Urumqi high-speed railway is an important part of the railway network connecting Gansu,Qinghai,and Xinjiang,and it is of far-reaching significance in facilitating China’s western development.An accessibility model and a double difference model were built to analyze the impact of the Lanzhou-Urumqi high-speed railway on regional accessibility and economic development of the areas along the line before(2012-2014)and after(2017-2019)its opening.The results show that the regional accessibility remains unchanged before and after the operation of this railway line.However,there is a spatial difference in improvement,that of central cities being better.The opening of the high-speed railway is conducive to driving the overall economic development of the region and promoting the comprehensive and coordinated development of regional economies.展开更多
The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typic...The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typical gust wind model for any wind angle,named“Chinese hat gust wind model”,was first constructed,and an algorithm for computing the aerodynamic loads was elaborated accordingly.A vehicle system dynamic model was then set up in order to investigate the vehicle system dynamic characteristics.The assessment of the operational safety has been conducted by means of characteristic wind curves(CWC).As some of the parameters of the wind-train system were difficult to measure,we also investigated the impact of the uncertain system parameters on the CWC.Results indicate that,the descending order of the operational safety index of the vehicle for each wind angle is 90°-60°-120°-30°-150°,and the worst condition for the operational safety occurs when the wind angle reaches around 90°.According to our findings,the gust factor and aerodynamic side force coefficient have great impact on the critical wind speed.Thus,these two parameters require special attention when considering the operational safety of a railway vehicle subjected to strong gust wind.展开更多
Prediction and control of the permanent settlement of a track caused by traffic loading from trains is crucial to high-speed railway design and maintenance. In this study, a unified prediction model of accumulative de...Prediction and control of the permanent settlement of a track caused by traffic loading from trains is crucial to high-speed railway design and maintenance. In this study, a unified prediction model of accumulative deformation of geomaterials used in railway construction subjected to cyclic loadings is introduced and calibrated using physical model testing. Based on this versatile model, a calculation approach to determine the track structure settlement under repeated loadings caused by the movement of the wheel axle of the train is proposed. Regression analysis on the physical model testing is adopted to determine the parameters involved in the computational approach. Comparison of model test data and computed results shows that the parameters obtained from the back-analysis are consistent throughout the various testing conditions, and the proposed calculation approach is capable of satisfactorily predicting the accumulative settlement of the railway roadbed and subgrade soil for various axle loads and loading cycles. A case study of a high-speed railway is performed to demonstrate the feasibility of the proposed approach in realistic engineering applications. The computation results from the settlement development of a roadbed and subgrade soil are presented and discussed.展开更多
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ...Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.展开更多
A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile fini...A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.展开更多
Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast trac...Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.展开更多
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp...With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.展开更多
A crucial system for the operation of high-speed trains is the pantograph catenary interface as it is the sole responsible to deliver electrical power to the train. Being the catenary a stationary system with a long l...A crucial system for the operation of high-speed trains is the pantograph catenary interface as it is the sole responsible to deliver electrical power to the train. Being the catenary a stationary system with a long lifespan it is also less likely to be redesigned and upgraded than the pantographs that fit the train vehicles. This letter proposes an optimization procedure for the improvement of the contact quality between the pantograph and the catenary solely based on the redesign of the pantograph head suspension characteristics. A pantograph model is defined and validated against experimental dynamic characteristics of existing pantographs. An optimization strategy based on the use of a global optimization method, to find the vicinity of the optimal solution, followed by the use of a deterministic optimization algorithm, to fine tune the optimal solution, is applied here. The spring stiffness, damping characteristics and bow mass are the design variables used for the pantograph optimization. The objective of the optimal problem is the minimization of the standard deviation of the contact force history, which is the most important quantity to define the contact quality. The pantograph head suspension characteristics are allowed to vary within technological realistic limits. It is found that current high-speed railway pantographs have a limited potential for mechanical improvements, not exceeding 10% 15% on the decrease of the standard deviation of the contact force. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301306]展开更多
Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Bas...Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.展开更多
Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very n...Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined.展开更多
Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th...Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.展开更多
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金This work was financially supported by the Portuguese Foundation for Science and Technology(FCT)through the PhD scholarship PD/BD/143007/2018The authors would like also to acknowledge the financial support of the projects IN2TRACK2-Research into enhanced track and switch and crossing system 2 and IN2TRACK3-Research into optimised and future railway infrastructure funded by European funds through the H2020(SHIFT2RAIL Innovation Programme)and of the Base Funding-UIDB/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC).
文摘High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.
基金Scientific Research Funding of IEM under Grant No.2021EEEVL0211Natural Science Foundation of Heilongjiang Province under Grant No.JQ2021E006National Natural Science Foundation of China under Grant No.52208185。
文摘The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52362049 and 52208446)the Natural Science Foundation of Gansu Province (Grant Nos. 22JR5RA344 and 22JR11RA152)+4 种基金the Special Funds for Guiding Local Scientifi c and Technological Development by the Central Government (Grant No. 22ZY1QA005)the Joint Innovation Fund Project of Lanzhou Jiaotong University and Corresponding Supporting University (Grant No. LH2023016)the Fundamental Research Funds for the Central Universities (2682023ZTZ010), the Lanzhou Science and Technology planning Project (Grant No. 2022-ZD-131)the key Research and Development Project of Lanzhou Jiaotong University (Grant No. LZJTU-ZDYF2302)the University Youth Fund Project of Lanzhou Jiaotong University (Grant No. 2021014)。
文摘The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.
基金funded by the National Railway Administration of the People’s Republic of China(No:N2023G001)Shaanxi Luyide Railroad and Bridge Technology Co.,Ltd.(No:W22L00520).
文摘Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed.
基金supported by the National Key R&D Program of China(2022YFB2602900)the 111 Project(B20040)the China Railway Science and Technology Research and Development Program Project(N2023T011-A(JB)).
文摘For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the turnout structure irregularities,and the instability arising from the bridge's flexural deformation lead to a strong coupling effect in the vehicle-turnout-bridge system.This significantly affects both ride comfort and operational safety.For addressing this issue,the present study considered a long-span continuous rigid-frame bridge as an example and established a train-turnout-bridge coupled dynamic model of high-speed railway.Utilizing a selfdeveloped dynamic simulation program,the study analysed the dynamic response characteristics when the train passes through the turnouts on the bridge.It also investigated the influence of different span-to-depth ratios of the bridge on the vehicle dynamic response when the train passes through the main line and branch line of turnouts and then proposed a span-to-depth ratio limit value for a long-span continuous rigid-frame bridge.The research findings suggest that the changes in the span-to-depth ratio have a relatively minor impact on the train’s operational performance but significantly affect the dynamic characteristics of the bridge structure.Based on the findings and a comprehensive assessment of safety indicators,it is advisable to establish a span-to-depth ratio limit of 1/4500 for a long-span continuous rigid-frame bridge.
基金National Natural Science Foundation of China under Grant 62203468Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant J2023G007+2 种基金Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001Youth Talent Program Supported by China Railway SocietyResearch Program of Beijing Hua-Tie Information Technology Corporation Limited under Grant 2023HT02.
文摘Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.
基金supported by the Federal Railroad Administration (FRA)the National Academy of Science (NAS) IDEA program
文摘Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways.
文摘The Lanzhou-Urumqi high-speed railway is an important part of the railway network connecting Gansu,Qinghai,and Xinjiang,and it is of far-reaching significance in facilitating China’s western development.An accessibility model and a double difference model were built to analyze the impact of the Lanzhou-Urumqi high-speed railway on regional accessibility and economic development of the areas along the line before(2012-2014)and after(2017-2019)its opening.The results show that the regional accessibility remains unchanged before and after the operation of this railway line.However,there is a spatial difference in improvement,that of central cities being better.The opening of the high-speed railway is conducive to driving the overall economic development of the region and promoting the comprehensive and coordinated development of regional economies.
基金supported by the National Natural Science Foundation of China(Grant No.51705267)China Postdoctoral Science Foundation Grant(Grant No.2018M630750)+1 种基金National Natural Science Foundation of China(Grant No.51605397)Natural Science Foundation of Shandong Province,China(Grant No.ZR2014EEP002).
文摘The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typical gust wind model for any wind angle,named“Chinese hat gust wind model”,was first constructed,and an algorithm for computing the aerodynamic loads was elaborated accordingly.A vehicle system dynamic model was then set up in order to investigate the vehicle system dynamic characteristics.The assessment of the operational safety has been conducted by means of characteristic wind curves(CWC).As some of the parameters of the wind-train system were difficult to measure,we also investigated the impact of the uncertain system parameters on the CWC.Results indicate that,the descending order of the operational safety index of the vehicle for each wind angle is 90°-60°-120°-30°-150°,and the worst condition for the operational safety occurs when the wind angle reaches around 90°.According to our findings,the gust factor and aerodynamic side force coefficient have great impact on the critical wind speed.Thus,these two parameters require special attention when considering the operational safety of a railway vehicle subjected to strong gust wind.
基金National Natural Science Foundation of China Under Grant No.50538010,10702063Technology Promotion Project of China Ministry of Railway Under Grant No.2008G005-D
文摘Prediction and control of the permanent settlement of a track caused by traffic loading from trains is crucial to high-speed railway design and maintenance. In this study, a unified prediction model of accumulative deformation of geomaterials used in railway construction subjected to cyclic loadings is introduced and calibrated using physical model testing. Based on this versatile model, a calculation approach to determine the track structure settlement under repeated loadings caused by the movement of the wheel axle of the train is proposed. Regression analysis on the physical model testing is adopted to determine the parameters involved in the computational approach. Comparison of model test data and computed results shows that the parameters obtained from the back-analysis are consistent throughout the various testing conditions, and the proposed calculation approach is capable of satisfactorily predicting the accumulative settlement of the railway roadbed and subgrade soil for various axle loads and loading cycles. A case study of a high-speed railway is performed to demonstrate the feasibility of the proposed approach in realistic engineering applications. The computation results from the settlement development of a roadbed and subgrade soil are presented and discussed.
基金the National Natural Science Foundation of China(Grant Nos. 51278423 and 51478395)for its financial support
文摘Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.
基金Project(51178469) supported by the National Natural Science Foundation of China
文摘A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.
基金Project(50678176) supported by the National Natural Science Foundation of China
文摘Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.
文摘With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.
基金supported by the projects SMARTRACKfunded by FCT with the contract PTDC/EMEPME/101419/2008 and PANTOTRAIN+1 种基金funded by the EC with the contract SC8-GA-2009-234015led by UNIFE
文摘A crucial system for the operation of high-speed trains is the pantograph catenary interface as it is the sole responsible to deliver electrical power to the train. Being the catenary a stationary system with a long lifespan it is also less likely to be redesigned and upgraded than the pantographs that fit the train vehicles. This letter proposes an optimization procedure for the improvement of the contact quality between the pantograph and the catenary solely based on the redesign of the pantograph head suspension characteristics. A pantograph model is defined and validated against experimental dynamic characteristics of existing pantographs. An optimization strategy based on the use of a global optimization method, to find the vicinity of the optimal solution, followed by the use of a deterministic optimization algorithm, to fine tune the optimal solution, is applied here. The spring stiffness, damping characteristics and bow mass are the design variables used for the pantograph optimization. The objective of the optimal problem is the minimization of the standard deviation of the contact force history, which is the most important quantity to define the contact quality. The pantograph head suspension characteristics are allowed to vary within technological realistic limits. It is found that current high-speed railway pantographs have a limited potential for mechanical improvements, not exceeding 10% 15% on the decrease of the standard deviation of the contact force. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301306]
基金Projects(50908232, 51108460) supported by the National Natural Science Foundation of China
文摘Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.
基金Projects(U1934207,51778630,11972379)supported by the National Natural Science Foundation of ChinaProject(2020zzts148)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(GJJ200657)supported the Research Project of Jiangxi Provincial Education Department,China。
文摘Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined.
基金Projects(2009G008-B,2010G018-E-3) supported by Key Projects of China Railway Ministry Science and Technology Research and Development ProgramProject(CX2013B076) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.