The Ghana Research Reactor-1 (GHARR-1) is a 34 kW low enriched uranium (LEU) Miniature Neutron Source Reactor (MNSR), tank-in-pool type and cooled by natural circulation under atmospheric pressure operating conditions...The Ghana Research Reactor-1 (GHARR-1) is a 34 kW low enriched uranium (LEU) Miniature Neutron Source Reactor (MNSR), tank-in-pool type and cooled by natural circulation under atmospheric pressure operating conditions. GHARR-1 is owned by Ghana Atomic Energy Commission (GAEC) and operated by National Nuclear Research Institute (NNRI), one of the institutes of GAEC. GHARR-1 is housed by Nuclear Reactors Research Centre (NRRC), one of the Centres of NNRI. Management/Administration, Radiation protection, Reactor operation and maintenance, Reactor utilization and Physical protection are the various systems/units that integrate to manage the activities of operation and utilization of GHARR-1 in addition to the quality assurance and quality control management system of the research reactor facility. The GHARR-1 which is currently in operation follows a robust maintenance culture adopted by the management system and this has made it possible to keep the reactor in operation with minimal interruption. The management system activities adopted at the Centre to ensure safety of the workers, public and the research reactor facility include authorization of the operation of the reactor for any experiments/modifications;providing material and financial resources for maintaining the research reactor facility;following standard procedures while carrying out Neutron Activation Analysis;participation in IAEA proficiency test;irradiation sites/positions characterization;following standard procedures while carrying out reactor operation and maintenance including reactor and pool water purification and other related activities;monitoring radiation levels in the controlled, supervised and uncontrolled areas of the research reactor facility as well as during reactor operation and maintenance;controlling the physical entry of the workers and public into the research reactor facility;and ensuring that the security structures provided to protect the reactor facility are functioning properly. The thorough knowledge on the functions of the various components that make up the electrical/electronic and control systems of the reactor has been observed to be important for continuous successful maintenance of the research reactor to keep the reactor in operation. This work provides some management system activities adopted to monitor the activities of the research reactor operation and utilization to guarantee safety of workers, public and the environment as well as to safeguard a continuous operation of the research reactor. These management system activities adopted among others, are in the form of Monitoring Forms provided for monitoring the activities of the research reactor operation and utilization in order to ensure standard procedures and specifications are followed and quality services are rendered to the public.展开更多
Synthesis and optimization of utility system usually involve grassroots design, retrofitting and operation optimization, which should be considered in modeling process. This paper presents a general method for synthes...Synthesis and optimization of utility system usually involve grassroots design, retrofitting and operation optimization, which should be considered in modeling process. This paper presents a general method for synthesis and optimization of a utility system. In this method, superstructure based mathematical model is established, in which different modeling methods are chosen based on the application. A binary code based parameter adaptive differential evolution algorithm is used to obtain the optimal con figuration and operation conditions of the system. The evolution algorithm and models are interactively used in the calculation, which ensures the feasibility of con figuration and improves computational ef ficiency. The capability and effectiveness of the proposed approach are demonstrated by three typical case studies.展开更多
In this paper, a self-mode-locked Nd:YVO_4 picosecond vortex laser is demonstrated, which can operate on the different Laguerre-Gaussian(LG) modes at 1 064 nm. A π/2 mode converter is utilized to realize the picoseco...In this paper, a self-mode-locked Nd:YVO_4 picosecond vortex laser is demonstrated, which can operate on the different Laguerre-Gaussian(LG) modes at 1 064 nm. A π/2 mode converter is utilized to realize the picosecond vortex laser with LG mode transformed from the high-order Hermite-Gaussian(HG) mode. For the proposed laser, the mode-locked pulse repetition rate is 1.81 GHz. The average output powers of LG_(12) mode and LG_(02) mode are 1.241 W and 1.27 W, respectively, and their slope efficiencies are 23.2% and 24%, respectively.展开更多
文摘The Ghana Research Reactor-1 (GHARR-1) is a 34 kW low enriched uranium (LEU) Miniature Neutron Source Reactor (MNSR), tank-in-pool type and cooled by natural circulation under atmospheric pressure operating conditions. GHARR-1 is owned by Ghana Atomic Energy Commission (GAEC) and operated by National Nuclear Research Institute (NNRI), one of the institutes of GAEC. GHARR-1 is housed by Nuclear Reactors Research Centre (NRRC), one of the Centres of NNRI. Management/Administration, Radiation protection, Reactor operation and maintenance, Reactor utilization and Physical protection are the various systems/units that integrate to manage the activities of operation and utilization of GHARR-1 in addition to the quality assurance and quality control management system of the research reactor facility. The GHARR-1 which is currently in operation follows a robust maintenance culture adopted by the management system and this has made it possible to keep the reactor in operation with minimal interruption. The management system activities adopted at the Centre to ensure safety of the workers, public and the research reactor facility include authorization of the operation of the reactor for any experiments/modifications;providing material and financial resources for maintaining the research reactor facility;following standard procedures while carrying out Neutron Activation Analysis;participation in IAEA proficiency test;irradiation sites/positions characterization;following standard procedures while carrying out reactor operation and maintenance including reactor and pool water purification and other related activities;monitoring radiation levels in the controlled, supervised and uncontrolled areas of the research reactor facility as well as during reactor operation and maintenance;controlling the physical entry of the workers and public into the research reactor facility;and ensuring that the security structures provided to protect the reactor facility are functioning properly. The thorough knowledge on the functions of the various components that make up the electrical/electronic and control systems of the reactor has been observed to be important for continuous successful maintenance of the research reactor to keep the reactor in operation. This work provides some management system activities adopted to monitor the activities of the research reactor operation and utilization to guarantee safety of workers, public and the environment as well as to safeguard a continuous operation of the research reactor. These management system activities adopted among others, are in the form of Monitoring Forms provided for monitoring the activities of the research reactor operation and utilization in order to ensure standard procedures and specifications are followed and quality services are rendered to the public.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202,61222303)+3 种基金the National Science Foundation of Shanghai(14ZR1410000)Shanghai R&D Platform Construction Program(13DZ2295300)Shanghai Rising-Star Program(13QH1401200)Shanghai Leading Academic Discipline Project(B504)
文摘Synthesis and optimization of utility system usually involve grassroots design, retrofitting and operation optimization, which should be considered in modeling process. This paper presents a general method for synthesis and optimization of a utility system. In this method, superstructure based mathematical model is established, in which different modeling methods are chosen based on the application. A binary code based parameter adaptive differential evolution algorithm is used to obtain the optimal con figuration and operation conditions of the system. The evolution algorithm and models are interactively used in the calculation, which ensures the feasibility of con figuration and improves computational ef ficiency. The capability and effectiveness of the proposed approach are demonstrated by three typical case studies.
基金supported by the National Natural Science Foundation of China(No.61108021)the Fundamental Research Funds for the Central Universities(Nos.2013JBM091 and S16JB00010)
文摘In this paper, a self-mode-locked Nd:YVO_4 picosecond vortex laser is demonstrated, which can operate on the different Laguerre-Gaussian(LG) modes at 1 064 nm. A π/2 mode converter is utilized to realize the picosecond vortex laser with LG mode transformed from the high-order Hermite-Gaussian(HG) mode. For the proposed laser, the mode-locked pulse repetition rate is 1.81 GHz. The average output powers of LG_(12) mode and LG_(02) mode are 1.241 W and 1.27 W, respectively, and their slope efficiencies are 23.2% and 24%, respectively.