The authors establish operator-valued Fourier multiplier theorems on Triebel spaces on R^N, where the required smoothness of the multiplier functions depends on the dimension N and the indices of the Triebel spaces. T...The authors establish operator-valued Fourier multiplier theorems on Triebel spaces on R^N, where the required smoothness of the multiplier functions depends on the dimension N and the indices of the Triebel spaces. This is used to give a sufficient condition of the maximal regularity in the sense of Triebel spaces for vector-valued Cauchy problems with Dirichlet boundary conditions.展开更多
We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterizati...We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterization of the maximal regularity in the sense of Triebel spaces for Cauchy problems with periodic boundary conditions.展开更多
We give a simpler proof of a result on operator-valued Fourier multipliers on Lp([0, 2π]d; X) using an induction argument based on a known result when d= 1.
The author establishes operator-valued Fourier multiplier theorems on multi-dimensional Hardy spaces Hp(Td;X),where 1 ≤ p < ∞,d ∈ N,and X is an AUMD Banach space having the property (α).The suffcient condition ...The author establishes operator-valued Fourier multiplier theorems on multi-dimensional Hardy spaces Hp(Td;X),where 1 ≤ p < ∞,d ∈ N,and X is an AUMD Banach space having the property (α).The suffcient condition on the multiplier is a Marcinkiewicz type condition of order 2 using Rademacher boundedness of sets of bounded linear operators.It is also shown that the assumption that X has the property (α) is necessary when d ≥ 2 even for scalar-valued multipliers.When the underlying Banach space does not have the property (α),a suffcient condition on the multiplier of Marcinkiewicz type of order 2 using a notion of d-Rademacher boundedness is also given.展开更多
Let V be a star shaped region. In 2006, Colzani, Meaney and Prestini proved that if function f satisfies some condition, then the multiplier transform with the characteristic function of tV as the multiplier tends to ...Let V be a star shaped region. In 2006, Colzani, Meaney and Prestini proved that if function f satisfies some condition, then the multiplier transform with the characteristic function of tV as the multiplier tends to f almost everywhere, when t goes to∞. In this paper we use a Theorem established by K.K.Chen to show that if we change their multiplier, then the condition on f can be weakened.展开更多
The single 2 dilation orthogonal wavelet multipliers in one dimensional case and single A-dilation(where A is any expansive matrix with integer entries and|det A|=2) wavelet multipliers in high dimensional case were c...The single 2 dilation orthogonal wavelet multipliers in one dimensional case and single A-dilation(where A is any expansive matrix with integer entries and|det A|=2) wavelet multipliers in high dimensional case were completely characterized by the Wutam Consortium(1998) and Z. Y. Li, et al.(2010). But there exist no more results on orthogonal multivariate wavelet matrix multipliers corresponding integer expansive dilation matrix with the absolute value of determinant not 2 in L~2(R~2). In this paper, we choose 2I2=(~2~0)as the dilation matrix and consider the 2 I2-dilation orthogonal multivariate waveletΨ = {ψ, ψ, ψ},(which is called a dyadic bivariate wavelet) multipliers. We call the3 × 3 matrix-valued function A(s) = [ f(s)], where fi, jare measurable functions, a dyadic bivariate matrix Fourier wavelet multiplier if the inverse Fourier transform of A(s)( ψ(s), ψ(s), ψ(s)) ~T=( g(s), g(s), g(s))~ T is a dyadic bivariate wavelet whenever(ψ, ψ, ψ) is any dyadic bivariate wavelet. We give some conditions for dyadic matrix bivariate wavelet multipliers. The results extended that of Z. Y. Li and X. L.Shi(2011). As an application, we construct some useful dyadic bivariate wavelets by using dyadic Fourier matrix wavelet multipliers and use them to image denoising.展开更多
Let p>2 be a given exponent.In this paper,we prove,with the best constant,the weak-type(p,p)inequality■for a large class of non-symmetric Fourier multipliers T_(m) obtained via modulation of jumps of certain L...Let p>2 be a given exponent.In this paper,we prove,with the best constant,the weak-type(p,p)inequality■for a large class of non-symmetric Fourier multipliers T_(m) obtained via modulation of jumps of certain Lévy processes.In particular,the estimate holds for appropriate linear combinations of second-order Riesz transforms and skew versions of the Beurling-Ahlfors operator on the complex plane.The proof rests on a novel probabilistic bound for Hilbert-space-valued martingales satisfying a certain non-symmetric subordination principle.Further applications to harmonic functions and Riesz systems on Euclidean domains are indicated.展开更多
Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m...Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n).展开更多
The Littlewood-Paley and Marcinkiewicz's multiplier theorems on the quan- tum torus are established. An key ingredient of the proof is vector-valued Littlewood-Paley and noncommutative Khinchin's inequalities.
Using the method of Clerc and Stein study the multipliers of spherical Fourier transform on symmetric space to proof the multipliers theory for the space SL(3,H)/SP(3), completely avoid the complex theory of Anker, an...Using the method of Clerc and Stein study the multipliers of spherical Fourier transform on symmetric space to proof the multipliers theory for the space SL(3,H)/SP(3), completely avoid the complex theory of Anker, and we have gain the same result. Key words Riemannian symmetric space SL(3,H)/SP(3) - multipliers - spherical Fourier transform - invariant differential operator CLC number O 152.5 - O 186.12 Biography: LIAN Bao-sheng (1973-), male, Master, research direction: Li group and Lie algebra.展开更多
Let n 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m,which is defined by Tm(f1, f2)(x) =(∫0^∞︱∫(Rn)^2)e^2πix·(ξ1+ξ2))m(tξ1, tξ2)f1(ξ1)f2(ξ2)d...Let n 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m,which is defined by Tm(f1, f2)(x) =(∫0^∞︱∫(Rn)^2)e^2πix·(ξ1+ξ2))m(tξ1, tξ2)f1(ξ1)f2(ξ2)dξ1dξ2︱^2dt/t)^1/2.Let s be an integer with s ∈ [n + 1, 2n] and p0 be a number satisfying 2n/s p0 2. Suppose that νω=∏i^2=1ω^i^p/p) and each ωi is a nonnegative function on Rn. In this paper, we show that under some condition on m, Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p(νω) if p0 〈 p1, p2 〈 ∞ with 1/p = 1/p1 + 1/p2. Moreover,if p0 〉 2n/s and p1 = p0 or p2 = p0, then Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p,∞(νω). The weighted end-point L log L type estimate and strong estimate for the commutators of Tm are also given. These were done by considering the boundedness of some related multilinear square functions associated with mild regularity kernels and essentially improving some basic lemmas which have been used before.展开更多
Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that th...Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that the commutator generated by T_σ and CMO(R^n) functions is a compact operator from L^(p1)(R^n, w_1) × L^(p2)(R^n, w_2) to L^p(R^n, ν_w) for appropriate indices p_1, p_2, p ∈ (1, ∞) with1 p=1/ p_1 +1/ p_2 and weights w_1, w_2 such that w = (w_1, w_2) ∈ A_(p/t)(R^(2n)).展开更多
文摘The authors establish operator-valued Fourier multiplier theorems on Triebel spaces on R^N, where the required smoothness of the multiplier functions depends on the dimension N and the indices of the Triebel spaces. This is used to give a sufficient condition of the maximal regularity in the sense of Triebel spaces for vector-valued Cauchy problems with Dirichlet boundary conditions.
基金The first author is supported by the NSF of China the Excellent Young Teachers Program of MOE,P.R.C.
文摘We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterization of the maximal regularity in the sense of Triebel spaces for Cauchy problems with periodic boundary conditions.
基金supported by"Maximal Regularity for Vector-valued Boundary Problems"from the National Natural Science Foundation of China(Grant No.10571099)Specialized Research Fund for the Doctoral Program of Higher Education and the Tsinghua Basic Research Foundation(Grant No.JCpy2005056).
文摘We give a simpler proof of a result on operator-valued Fourier multipliers on Lp([0, 2π]d; X) using an induction argument based on a known result when d= 1.
基金Project supported by the National Natural Science Foundation of China (No. 10731020)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 200800030059)
文摘The author establishes operator-valued Fourier multiplier theorems on multi-dimensional Hardy spaces Hp(Td;X),where 1 ≤ p < ∞,d ∈ N,and X is an AUMD Banach space having the property (α).The suffcient condition on the multiplier is a Marcinkiewicz type condition of order 2 using Rademacher boundedness of sets of bounded linear operators.It is also shown that the assumption that X has the property (α) is necessary when d ≥ 2 even for scalar-valued multipliers.When the underlying Banach space does not have the property (α),a suffcient condition on the multiplier of Marcinkiewicz type of order 2 using a notion of d-Rademacher boundedness is also given.
基金Supported by the National Natural Science Foundation of China(11071065,11171306)
文摘Let V be a star shaped region. In 2006, Colzani, Meaney and Prestini proved that if function f satisfies some condition, then the multiplier transform with the characteristic function of tV as the multiplier tends to f almost everywhere, when t goes to∞. In this paper we use a Theorem established by K.K.Chen to show that if we change their multiplier, then the condition on f can be weakened.
基金partially supported by the National Natural Science Foundation of China (Grant No. 11101142 and No. 11571107)
文摘The single 2 dilation orthogonal wavelet multipliers in one dimensional case and single A-dilation(where A is any expansive matrix with integer entries and|det A|=2) wavelet multipliers in high dimensional case were completely characterized by the Wutam Consortium(1998) and Z. Y. Li, et al.(2010). But there exist no more results on orthogonal multivariate wavelet matrix multipliers corresponding integer expansive dilation matrix with the absolute value of determinant not 2 in L~2(R~2). In this paper, we choose 2I2=(~2~0)as the dilation matrix and consider the 2 I2-dilation orthogonal multivariate waveletΨ = {ψ, ψ, ψ},(which is called a dyadic bivariate wavelet) multipliers. We call the3 × 3 matrix-valued function A(s) = [ f(s)], where fi, jare measurable functions, a dyadic bivariate matrix Fourier wavelet multiplier if the inverse Fourier transform of A(s)( ψ(s), ψ(s), ψ(s)) ~T=( g(s), g(s), g(s))~ T is a dyadic bivariate wavelet whenever(ψ, ψ, ψ) is any dyadic bivariate wavelet. We give some conditions for dyadic matrix bivariate wavelet multipliers. The results extended that of Z. Y. Li and X. L.Shi(2011). As an application, we construct some useful dyadic bivariate wavelets by using dyadic Fourier matrix wavelet multipliers and use them to image denoising.
基金supported by National Natural Science Foundation of China(Grant Nos.12125109 and 11961131003)。
文摘Let p>2 be a given exponent.In this paper,we prove,with the best constant,the weak-type(p,p)inequality■for a large class of non-symmetric Fourier multipliers T_(m) obtained via modulation of jumps of certain Lévy processes.In particular,the estimate holds for appropriate linear combinations of second-order Riesz transforms and skew versions of the Beurling-Ahlfors operator on the complex plane.The proof rests on a novel probabilistic bound for Hilbert-space-valued martingales satisfying a certain non-symmetric subordination principle.Further applications to harmonic functions and Riesz systems on Euclidean domains are indicated.
基金Supported by NSP of China (Grant No. 10571015)RFDP of China (Grant No. 20050027025).
文摘Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n).
文摘The Littlewood-Paley and Marcinkiewicz's multiplier theorems on the quan- tum torus are established. An key ingredient of the proof is vector-valued Littlewood-Paley and noncommutative Khinchin's inequalities.
文摘Using the method of Clerc and Stein study the multipliers of spherical Fourier transform on symmetric space to proof the multipliers theory for the space SL(3,H)/SP(3), completely avoid the complex theory of Anker, and we have gain the same result. Key words Riemannian symmetric space SL(3,H)/SP(3) - multipliers - spherical Fourier transform - invariant differential operator CLC number O 152.5 - O 186.12 Biography: LIAN Bao-sheng (1973-), male, Master, research direction: Li group and Lie algebra.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401175, 11501169 and 11471041)the Fundamental Research Funds for the Central Universities (Grant No. 2014KJJCA10)+2 种基金Program for New Century Excellent Talents in University (Grant No. NCET-13-0065)Grantin-Aid for Scientific Research (C) (Grant No. 15K04942)Japan Society for the Promotion of Science
文摘Let n 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m,which is defined by Tm(f1, f2)(x) =(∫0^∞︱∫(Rn)^2)e^2πix·(ξ1+ξ2))m(tξ1, tξ2)f1(ξ1)f2(ξ2)dξ1dξ2︱^2dt/t)^1/2.Let s be an integer with s ∈ [n + 1, 2n] and p0 be a number satisfying 2n/s p0 2. Suppose that νω=∏i^2=1ω^i^p/p) and each ωi is a nonnegative function on Rn. In this paper, we show that under some condition on m, Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p(νω) if p0 〈 p1, p2 〈 ∞ with 1/p = 1/p1 + 1/p2. Moreover,if p0 〉 2n/s and p1 = p0 or p2 = p0, then Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p,∞(νω). The weighted end-point L log L type estimate and strong estimate for the commutators of Tm are also given. These were done by considering the boundedness of some related multilinear square functions associated with mild regularity kernels and essentially improving some basic lemmas which have been used before.
基金supported by the National Natural Science Foundation of China(No.11371370)
文摘Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that the commutator generated by T_σ and CMO(R^n) functions is a compact operator from L^(p1)(R^n, w_1) × L^(p2)(R^n, w_2) to L^p(R^n, ν_w) for appropriate indices p_1, p_2, p ∈ (1, ∞) with1 p=1/ p_1 +1/ p_2 and weights w_1, w_2 such that w = (w_1, w_2) ∈ A_(p/t)(R^(2n)).